Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Brain Behav Immun ; 115: 101-108, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820972

RESUMO

BACKGROUND: Socioeconomic status (SES) gradients in health are well-documented, and while biological pathways are incompletely understood, chronic inflammation and accelerated immune aging (immunosenescence) among lower SES individuals have been implicated. However, previous findings have come from samples in higher income countries, and it is unclear how generalizable they are to lower- and middle-income countries (LMIC) with different infectious exposures and where adiposity-an important contributor to chronic inflammation-might show different SES patterning. To address this gap, we explored associations between SES and inflammation and immunosenescence in a sample of women in Cebu, Philippines. METHODS: Data came from the mothers of the Cebu Longitudinal Health and Nutrition Survey birth cohort (mean age: 47.7, range: 35-69 years). SES was measured as a combination of annual household income, education level, and assets. Chronic inflammation was measured using C-reactive protein (CRP) in plasma samples from 1,834 women. Immunosenescence was measured by the abundance of exhausted CD8T (CD8 + CD28-CD45RA-) and naïve CD8T and CD4T cells, estimated from DNA methylation in whole blood in a random subsample of 1,028. Possible mediators included waist circumference and a collection of proxy measures of pathogen exposure. RESULTS: SES was negatively associated with the measures of immunosenescence, with slight evidence for mediation by a proxy measure for pathogen exposure from the household's drinking water source. In contrast, SES was positively associated with CRP, which was explained by the positive association with waist circumference. CONCLUSIONS: Similar to higher income populations, in Cebu there is an SES-gradient in pathogen exposures and immunosenescence. However, lifestyle changes occurring more rapidly among higher SES individuals is contributing to a positive association between SES and adiposity and inflammation. Our results suggest more studies are needed to clarify the relationship between SES and inflammation and immunosenescence across LMIC.


Assuntos
Imunossenescência , Classe Social , Pessoa de Meia-Idade , Humanos , Feminino , Filipinas/epidemiologia , Inflamação , Fatores Socioeconômicos , Proteína C-Reativa/análise , Obesidade
2.
Alzheimers Dement ; 20(4): 2538-2551, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38345197

RESUMO

INTRODUCTION: Growing evidence indicates that fine particulate matter (PM2.5) is a risk factor for Alzheimer's disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as a potential mediator of this association. METHODS: We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3, and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-four CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD. HIGHLIGHTS: First study to evaluate the potential mediation effect of DNA methylation for the association between PM2.5 exposure and neuropathological changes of Alzheimer's disease. Study was based on brain tissues rarely investigated in previous air pollution research. Cg10495669, assigned to RBCK1 gene playing a role in inflammation, was associated consistently with 1-year, 3-year, and 5-year traffic-related PM2.5 exposures prior to death. Meet-in-the-middle approach and high-dimensional mediation analysis were used simultaneously to increase the potential of identifying the differentially methylated CpGs. Differential DNAm related to neuroinflammation was found to mediate the association between traffic-related PM2.5 and Alzheimer's disease.


Assuntos
Doença de Alzheimer , Metilação de DNA , Humanos , Doença de Alzheimer/genética , Doenças Neuroinflamatórias , Material Particulado/efeitos adversos , Encéfalo
3.
Am J Hum Biol ; 35(11): e23948, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37338007

RESUMO

OBJECTIVES: The drivers of human life expectancy gains over the past 200 years are not well-established, with a potential role for historical reductions in infectious disease. We investigate whether infectious exposures in infancy predict biological aging using DNA methylation-based markers that forecast patterns of morbidity and mortality later in life. METHODS: N = 1450 participants from the Cebu Longitudinal Health and Nutrition Survey-a prospective birth cohort initiated in 1983-provided complete data for the analyses. Mean chronological age was 20.9 years when venous whole blood samples were drawn for DNA extraction and methylation analysis, with subsequent calculation of three epigenetic age markers: Horvath, GrimAge, and DunedinPACE. Unadjusted and adjusted least squares regression models were evaluated to test the hypothesis that infectious exposures in infancy are associated with epigenetic age. RESULTS: Birth in the dry season, a proxy measure for increased infectious exposure in the first year of life, as well as the number of symptomatic infections in the first year of infancy, predicted lower epigenetic age. Infectious exposures were associated with the distribution of white blood cells in adulthood, which were also associated with measures of epigenetic age. CONCLUSIONS: We document negative associations between measures of infectious exposure in infancy and DNA methylation-based measures of aging. Additional research, across a wider range of epidemiological settings, is needed to clarify the role of infectious disease in shaping immunophenotypes and trajectories of biological aging and human life expectancy.


Assuntos
Envelhecimento , Doenças Transmissíveis , Humanos , Lactente , Adulto Jovem , Adulto , Estudos Prospectivos , Filipinas/epidemiologia , Envelhecimento/genética , Metilação de DNA , Marcadores Genéticos , Epigênese Genética
4.
J Biol Chem ; 294(44): 16080-16094, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31506296

RESUMO

Fcp1 is a protein phosphatase that facilitates transcription elongation and termination by dephosphorylating the C-terminal domain of RNA polymerase II. High-throughput genetic screening and gene expression profiling of fcp1 mutants revealed a novel connection to Cdk8, the Mediator complex kinase subunit, and Skn7, a key transcription factor in the oxidative stress response pathway. Briefly, Skn7 was enriched as a regulator of genes whose mRNA levels were altered in fcp1 and cdk8Δ mutants and was required for the suppression of fcp1 mutant growth defects by loss of CDK8 under oxidative stress conditions. Targeted analysis revealed that mutating FCP1 decreased Skn7 mRNA and protein levels as well as its association with target gene promoters but paradoxically increased the mRNA levels of Skn7-dependent oxidative stress-induced genes (TRX2 and TSA1) under basal and induced conditions. The latter was in part recapitulated via chemical inhibition of transcription in WT cells, suggesting that a combination of transcriptional and posttranscriptional effects underscored the increased mRNA levels of TRX2 and TSA1 observed in the fcp1 mutant. Interestingly, loss of CDK8 robustly normalized the mRNA levels of Skn7-dependent genes in the fcp1 mutant background and also increased Skn7 protein levels by preventing its turnover. As such, our work suggested that loss of CDK8 could overcome transcriptional and/or posttranscriptional alterations in the fcp1 mutant through its regulatory effect on Skn7. Furthermore, our work also implicated FCP1 and CDK8 in the broader response to environmental stressors in yeast.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Estresse Oxidativo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Quinase 8 Dependente de Ciclina/genética , Proteínas de Ligação a DNA/genética , Peroxidases/genética , Peroxidases/metabolismo , Fosfoproteínas Fosfatases/genética , Estabilidade Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
6.
Geroscience ; 46(4): 3957-3969, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38466455

RESUMO

In humans, DNA methylation (DNAm) based estimators of telomere length (TL) have been shown to better predict TL-associated variables (e.g., age, sex, and mortality) than TL itself. The biological significance of DNAm-based estimators of TL (DNAmTL) is unclear. In vitro DNAmTL shortens with cell replications, even when telomerase is maintaining TL. Telomerase is typically suppressed in humans, except in testes. Accordingly, sperm TL increases with age, and offspring with greater paternal age at conception (PAC) have longer TL. Thus, we expect that PAC associations with DNAmTL can shed light on whether in vivo cell replications in the presence of high telomerase activity (production of sperm) shorten DNAmTL or if PAC-lengthened TL causes lengthened DNAmTL. In a pre-registered analysis, using data from 1733 blood samples from the Philippines, we examined the association between paternal age at conception (PAC) and offspring DNAmTL. We did not find an association between PAC and DNAmTL but found a positive association of paternal grandfather's age at father's conception predicting grandchild's DNAmTL. In post hoc analyses, we examined how DNAmTL versus qPCR-measured TL (qPCR-TL) correlated with measures typically associated with TL. Contrary to previous findings, on almost all measures of external validity (correlations with parental TLs, southern blot TL, and age), qPCR-TL outperformed DNAmTL. The "kilobase" units of DNAm-based estimators of TL showed considerable deviations from southern blot-derived kilobase measures. Our findings suggest that DNAmTL is not a reliable index of inherited aspects of TL and underscores uncertainty about the biological meaning of DNAmTL.


Assuntos
Metilação de DNA , Idade Paterna , Telômero , Humanos , Masculino , Metilação de DNA/genética , Telômero/genética , Feminino , Adulto , Pessoa de Meia-Idade , Homeostase do Telômero/genética , Homeostase do Telômero/fisiologia , Fertilização/genética , Idoso
7.
Biomedicines ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927468

RESUMO

BACKGROUND: DNA methylation may be a link between HIV, aging, and the increased risk of lung comorbidities. We investigated whether bronchoalveolar lavage (BAL) cells of people living with HIV (PLWH) demonstrate epigenetic disruptions and advanced epigenetic aging. METHODS: BAL cell DNA methylation from 25 PLWH and 16 HIV-uninfected individuals were tested for differential methylation of Alu and LINE-1 sites, markers of aging. We used a weighted gene correlation network analysis to identify HIV- and age-associated co-methylation networks. We tested the effect of HIV on DNA methylation using a robust linear model (false discovery rate < 0.10). RESULTS: The BAL cells of PLWH were marked by global hypomethylation in both Alu and LINE-1 elements. Six co-methylated CpG networks were identified that were significantly associated with age; of these, the red module was significantly differentially methylated in PLWH and enriched pathways (e.g., Ras signaling and T-cell receptors). We identified 6428 CpG sites associated with HIV. CONCLUSIONS: We have shown here for the first time that alterations in the DNA methylation of BAL cells in the lung with HIV show a pattern of advanced aging. This study strongly supports that HIV may contribute to an increased the risk of lung comorbidities through the epigenetics of aging.

8.
Aging (Albany NY) ; 16(8): 6694-6716, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663907

RESUMO

Previous research has found that living in a disadvantaged neighborhood is associated with poor health outcomes. Living in disadvantaged neighborhoods may alter inflammation and immune response in the body, which could be reflected in epigenetic mechanisms such as DNA methylation (DNAm). We used robust linear regression models to conduct an epigenome-wide association study examining the association between neighborhood deprivation (Area Deprivation Index; ADI), and DNAm in brain tissue from 159 donors enrolled in the Emory Goizueta Alzheimer's Disease Research Center (Georgia, USA). We found one CpG site (cg26514961, gene PLXNC1) significantly associated with ADI after controlling for covariates and multiple testing (p-value=5.0e-8). Effect modification by APOE ε4 was statistically significant for the top ten CpG sites from the EWAS of ADI, indicating that the observed associations between ADI and DNAm were mainly driven by donors who carried at least one APOE ε4 allele. Four of the top ten CpG sites showed a significant concordance between brain tissue and tissues that are easily accessible in living individuals (blood, buccal cells, saliva), including DNAm in cg26514961 (PLXNC1). Our study identified one CpG site (cg26514961, PLXNC1 gene) that was significantly associated with neighborhood deprivation in brain tissue. PLXNC1 is related to immune response, which may be one biological pathway how neighborhood conditions affect health. The concordance between brain and other tissues for our top CpG sites could make them potential candidates for biomarkers in living individuals.


Assuntos
Autopsia , Ilhas de CpG , Metilação de DNA , Humanos , Masculino , Feminino , Ilhas de CpG/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Características da Vizinhança , Epigênese Genética , Estudo de Associação Genômica Ampla , Estudos de Coortes
9.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005299

RESUMO

Background: The recently launched DNA methylation profiling platform, Illumina MethylationEPIC BeadChip Infinium microarray v2.0 (EPICv2), is highly correlated with measurements obtained from its predecessor MethylationEPIC BeadChip Infinium microarray v1.0 (EPICv1). However, the concordance between the two versions in the context of DNA methylation-based tools, including cell type deconvolution algorithms, epigenetic clocks, and inflammation and lifestyle biomarkers has not yet been investigated. Findings: We profiled DNA methylation on both EPIC versions using matched venous blood samples from individuals spanning early to late adulthood across three cohorts. On combining the DNA methylomes of the cohorts, we observed that samples primarily clustered by the EPIC version they were measured on. Within each cohort, when we calculated cell type proportions, epigenetic age acceleration (EAA), rate of aging estimates, and biomarker scores for the matched samples on each version, we noted significant differences between EPICv1 and EPICv2 in the majority of these estimates. These differences were not significant, however, when estimates were adjusted for EPIC version or when EAAs were calculated separately for each EPIC version. Conclusions: Our findings indicate that EPIC version differences predominantly explain DNA methylation variation and influence estimates of DNA methylation-based tools, and therefore we recommend caution when combining cohorts run on different versions. We demonstrate the importance of calculating DNA methylation-based estimates separately for each EPIC version or accounting for EPIC version either as a covariate in statistical models or by using version correction algorithms.

10.
Biomedicines ; 11(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672643

RESUMO

Epigenetic modifications are common in chronic obstructive pulmonary disease (COPD); however, their clinical relevance is largely unknown. We hypothesized that epigenetic disruptions are associated with symptoms and health status in COPD. We profiled the blood (n = 57) and airways (n = 62) of COPD patients for DNA methylation (n = 55 paired). The patients' health status was assessed using the St. George's Respiratory Questionnaire (SGRQ). We conducted differential methylation analyses and identified pathways characterized by epigenetic disruptions associated with SGRQ scores and its individual domains. 29,211 and 5044 differentially methylated positions (DMPs) were associated with total SGRQ scores in blood and airway samples, respectively. The activity, impact, and symptom domains were associated with 9161, 25,689 and 17,293 DMPs in blood, respectively; and 4674, 3730 and 5063 DMPs in airways, respectively. There was a substantial overlap of DMPs between airway and blood. DMPs were enriched for pathways related to common co-morbidities of COPD (e.g., ageing, cancer and neurological) in both tissues. Health status in COPD is associated with airway and systemic epigenetic changes especially in pathways related to co-morbidities of COPD. There are more blood DMPs than in the airways suggesting that blood epigenome is a promising source to discover biomarkers for clinical outcomes in COPD.

11.
medRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425713

RESUMO

INTRODUCTION: Growing evidence indicates fine particulate matter (PM2.5) as risk factor for Alzheimer's' disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as potential mediator of this association. METHODS: We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3 and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-six CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD.

12.
Epigenetics ; 17(11): 1535-1545, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35574972

RESUMO

Epigenetic clocks quantify regular changes in DNA methylation that occur with age, or in relation to biomarkers of ageing, and are strong predictors of morbidity and mortality. Here, we assess whether measures of fetal nutrition and growth that predict adult chronic disease also predict accelerated biological ageing in young adulthood using a suite of commonly used epigenetic clocks. Data come from the Cebu Longitudinal Health and Nutrition Survey (CLHNS), a long-running cohort followed since birth in metropolitan Cebu, Philippines. Past work has shown that birth weight (BW) and the mother's arm fat during pregnancy (a measure of pregnancy energy status) relate inversely to health outcomes in the CLHNS but primarily in males. Genome-wide DNA methylation was assessed in whole blood using the Infinium EPIC array. Participants included males (n=895) and females (n=803) measured in 2005 (20.8-22.5 years). Clocks included the Hannum and Horvath clocks trained on chronological age, the DNAmPhenoAge and DNAmGrimAge clocks trained on clinical biomarkers, the Dunedin pace of ageing (DunedinPACE) clock trained on longitudinal changes in ageing biomarkers, and the DNAmTL clock trained on leukocyte telomere length. In males, lower BW predicted advanced biological ageing using the Hannum, DNAmPhenoAge, DunedinPoAm, and DNAmTL clocks. In contrast, BW did not predict any clock in female participants. Participants' mothers' pregnancy arm fat only predicted DNAmTL in males. These findings suggest that epigenetic clocks are a useful tool for gauging long-term outcomes predicted by fetal growth, and add to existing evidence in the CLHNS for sex differences in these relationships.


Assuntos
Cebus , Metilação de DNA , Humanos , Feminino , Adulto Jovem , Gravidez , Masculino , Animais , Adulto , Peso ao Nascer/genética , Filipinas , Envelhecimento/genética , Aceleração , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA