RESUMO
In mammalian cells, small non-coding RNAs (sncRNAs) negatively regulate gene expression in a pathway known as RNA interference (RNAi). RNAi can be categorized into post-transcriptional gene silencing (PTGS), which involves the cleavage of target messenger RNA (mRNA) or inhibition of translation in the cytoplasm, and transcriptional gene silencing (TGS), which is mediated by the establishment of repressive epigenetic marks at target loci. Transfer RNAs (tRNAs), which are essential for translation, can be processed into small ncRNAs, termed tRNA-derived small RNAs (tsRNAs). The biogenesis of tsRNAs and their role in gene expression regulation has not yet been fully understood. Here, we show that Dicer dependent tsRNAs promote gene silencing through a mechanism distinct from PTGS and TGS. tsRNAs can lead to downregulation of target genes by targeting introns via nascent RNA silencing (NRS) in nuclei. Furthermore, we show that Ago2 slicer activity is required for this mechanism. Synthetic tsRNAs can significantly reduce expression of a target gene at both RNA and protein levels. Target genes regulated by NRS are associated with various diseases, which further underpins its biological significance. Finally, we show that NRS is evolutionarily conserved and has the potential to be explored as a novel synthetic sRNA based therapeutic.
Assuntos
Interferência de RNA , Pequeno RNA não Traduzido , RNA de Transferência , Animais , Regulação da Expressão Gênica , Mamíferos/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , RNA de Transferência/metabolismoRESUMO
Transfer RNAs (tRNAs) are small non-coding RNAs (sncRNAs) essential for protein translation. Emerging evidence suggests that tRNAs can also be processed into smaller fragments, tRNA-derived small RNAs (tsRNAs), a novel class of sncRNAs with powerful applications and high biological relevance to cancer. tsRNAs biogenesis is heterogeneous and involves different ribonucleases, such as Angiogenin and Dicer. For many years, tsRNAs were thought to be just degradation products. However, accumulating evidence shows their roles in gene expression: either directly via destabilising the mRNA or the ribosomal machinery, or indirectly via regulating the expression of ribosomal components. Furthermore, tsRNAs participate in various biological processes linked to cancer, including apoptosis, cell cycle, immune response, and retroviral insertion into the human genome. It is emerging that tsRNAs have significant therapeutic potential. Endogenous tsRNAs can be used as cancer biomarkers, while synthetic tsRNAs and antisense oligonucleotides can be employed to regulate gene expression. In this review, we are recapitulating the regulatory roles of tsRNAs, with a focus on cancer biology.
Assuntos
Neoplasias , Pequeno RNA não Traduzido , Humanos , Amigos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Neoplasias/genética , BiologiaRESUMO
Fibroblast activation protein alpha (FAP) is a cell-surface expressed type II glycoprotein that has a unique proteolytic activity. FAP has active soluble forms that retain the extracellular portion but lack the transmembrane domain and cytoplasmic tail. FAP expression is normally very low in adult tissue but is highly expressed by activated fibroblasts in sites of tissue remodelling. Thus, FAP is a potential biomarker and pharmacological target in liver fibrosis, atherosclerosis, cardiac fibrosis, arthritis and cancer. Understanding the biological significance of FAP by investigating protein structure, interactions and activities requires reliable methods for the production and purification of abundant pure and stable protein. We describe an improved production and purification protocol for His6-tagged recombinant soluble human FAP. A modified baculovirus expression construct was generated using the pFastBac1 vector and the gp67 secretion signal to produce abundant active soluble recombinant human FAP (residues 27-760) in insect cells. The FAP purification protocol employed ammonium sulphate precipitation, ion exchange chromatography, immobilised metal affinity chromatography and ultrafiltration. High purity was achieved, as judged by gel electrophoresis and specific activity. The purified 82 kDa FAP protein was specifically inhibited by a FAP selective inhibitor, ARI-3099, and was inhibited by zinc with an IC50 of 25 µM. Our approach could be adopted for producing the soluble portions of other type II transmembrane glycoproteins to study their structure and function.
Assuntos
Endopeptidases , Proteínas de Membrana , Animais , Endopeptidases/biossíntese , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/isolamento & purificação , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Células Sf9 , SpodopteraRESUMO
Proteases catalyse irreversible posttranslational modifications that often alter a biological function of the substrate. The protease dipeptidyl peptidase 4 (DPP4) is a pharmacological target in type 2 diabetes therapy primarily because it inactivates glucagon-like protein-1. DPP4 also has roles in steatosis, insulin resistance, cancers and inflammatory and fibrotic diseases. In addition, DPP4 binds to the spike protein of the MERS virus, causing it to be the human cell surface receptor for that virus. DPP4 has been identified as a potential binding target of SARS-CoV-2 spike protein, so this question requires experimental investigation. Understanding protein structure and function requires reliable protocols for production and purification. We developed such strategies for baculovirus generated soluble recombinant human DPP4 (residues 29-766) produced in insect cells. Purification used differential ammonium sulphate precipitation, hydrophobic interaction chromatography, dye affinity chromatography in series with immobilised metal affinity chromatography, and ion-exchange chromatography. The binding affinities of DPP4 to the SARS-CoV-2 full-length spike protein and its receptor-binding domain (RBD) were measured using surface plasmon resonance and ELISA. This optimised DPP4 purification procedure yielded 1 to 1.8 mg of pure fully active soluble DPP4 protein per litre of insect cell culture with specific activity >30 U/mg, indicative of high purity. No specific binding between DPP4 and CoV-2 spike protein was detected by surface plasmon resonance or ELISA. In summary, a procedure for high purity high yield soluble human DPP4 was achieved and used to show that, unlike MERS, SARS-CoV-2 does not bind human DPP4.
Assuntos
Enzima de Conversão de Angiotensina 2/isolamento & purificação , Dipeptidil Peptidase 4/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Enzima de Conversão de Angiotensina 2/biossíntese , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Clonagem Molecular , Dipeptidil Peptidase 4/biossíntese , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/genética , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Plasmídeos/química , Plasmídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9 , Glicoproteína da Espícula de Coronavírus/biossíntese , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Spodoptera , Ressonância de Plasmônio de SuperfícieRESUMO
Gene expression can be regulated by transcriptional or post-transcriptional gene silencing. Recently, we described nuclear nascent RNA silencing that is mediated by Dicer-dependent tRNA-derived small RNA molecules. In addition to tRNA, RNA polymerase III also transcribes vault RNA, a component of the ribonucleoprotein complex vault. Here, we show that Dicer-dependent small vault RNA1-2 (svtRNA1-2) associates with Argonaute 2 (Ago2). Although endogenous vtRNA1-2 is present mostly in the cytoplasm, svtRNA1-2 localises predominantly in the nucleus. Furthermore, in Ago2 and Dicer knockdown cells, a subset of genes that are up-regulated at the nascent level were predicted to be targeted by svtRNA1-2 in the intronic region. Genomic deletion of vtRNA1-2 results in impaired cellular proliferation and the up-regulation of genes associated with cell membrane physiology and cell adhesion. Silencing activity of svtRNA1-2 molecules is dependent on seed-plus-complementary-paired hybridisation features and the presence of a 5-nucleotide loop protrusion on target RNAs. Our data reveal a role of Dicer-dependent svtRNA1-2, possessing unique molecular features, in modulation of the expression of membrane-associated proteins at the nascent RNA level.