Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(13): 5140-5150, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973304

RESUMO

Beta-N-methylamino-l-alanine (BMAA) is a potential neurotoxic nonprotein amino acid, which can reach the human body through the food chain. When BMAA interacts with bicarbonate in the human body, carbamate adducts are produced, which share a high structural similarity with the neurotransmitter glutamate. It is believed that BMAA and its l-carbamate adducts bind in the glutamate binding site of ionotropic glutamate receptor 2 (GluR2). Chronic exposure to BMAA and its adducts could cause neurological illness such as neurodegenerative diseases. However, the mechanism of BMAA action and its carbamate adducts bound to GluR2 has not yet been elucidated. Here, we investigate the binding modes and the affinity of BMAA and its carbamate adducts to GluR2 in comparison to the natural agonist, glutamate, to understand whether these can act as GluR2 modulators. Initially, we perform molecular dynamics simulations of BMAA and its carbamate adducts bound to GluR2 to examine the stability of the ligands in the S1/S2 ligand-binding core of the receptor. In addition, we utilize alchemical free energy calculations to compute the difference in the free energy of binding of the beta-carbamate adduct of BMAA to GluR2 compared to that of glutamate. Our findings indicate that carbamate adducts of BMAA and glutamate remain stable in the binding site of the GluR2 compared to BMAA. Additionally, alchemical free energy results reveal that glutamate and the beta-carbamate adduct of BMAA have comparable binding affinity to the GluR2. These results provide a rationale that BMAA carbamate adducts may be, in fact, the modulators of GluR2 and not BMAA itself.


Assuntos
Diamino Aminoácidos , Carbamatos , Toxinas de Cianobactérias , Receptores de AMPA , Receptores de AMPA/metabolismo , Receptores de AMPA/química , Diamino Aminoácidos/química , Diamino Aminoácidos/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Simulação de Dinâmica Molecular , Humanos , Sítios de Ligação , Ligação Proteica , Ácido Glutâmico/metabolismo , Ácido Glutâmico/química , Ligantes
2.
Arch Pharm (Weinheim) ; 357(3): e2300583, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110703

RESUMO

Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest. In an attempt to find novel chemotypes, a virtual screening approach was employed, resulting in the identification of new chemical entities with a certain binding capability, the most versatile of which was the benzimidazole-containing compound 10. Through rational design, a small library of its derivatives was synthesized and evaluated. The homogeneous time-resolved fluorescence (HTRF) assay revealed that compound 17 shows the most potent inhibitory activity (IC50 ) in the submicromolar range and notably, differently from the major part of PD-L1 inhibitors, exhibits satisfactory water solubility properties. These findings highlight the potential of benzimidazole-based compounds as novel promising candidates for PD-L1 inhibition.


Assuntos
Compostos de Bifenilo , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Ligantes , Relação Estrutura-Atividade , Benzimidazóis/farmacologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA