Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37085140

RESUMO

Rainbow trout (Oncorhynchus mykiss) is traditionally considered as a poor user of digestible carbohydrates harbouring persistent postprandial hyperglycaemia and decreased growth performances when fed a diet containing more than 20% of digestible carbohydrates. While this glucose-intolerant phenotype is well-described in juveniles, evidence points to a particular regulation of glucose metabolism in rainbow trout broodstrocks. By detecting changes in glucose levels and triggering a specific metabolic response, the hypothalamus plays a key role in the regulation of peripheral glucose metabolism. Therefore, our objective was to assess, for the first time in fish, the short-term consequences in hypothalamus, the glucose sensing and feed intake regulation of feeding mature female and male, and neomale rainbow trout with a diet containing either no or a 33% carbohydrate. The hypothalamic glucosensing capacity was assessed through mRNA levels of glucosensing related-genes and feed intake regulation through appetite-regulating peptides. Our data indicate that a brief period of carbohydrate intake (5 meals at 8 °C) did not induce specific changes in glucosensing capacity and appetite-regulating peptides in the hypothalamus of rainbow trout broodstock. Our results did however demonstrate, for the first time in fish, the existence of sex dimorphism of glucosensing-related genes and appetite-regulating peptides.


Assuntos
Oncorhynchus mykiss , Feminino , Masculino , Animais , Oncorhynchus mykiss/fisiologia , Apetite , Caracteres Sexuais , Glucose/metabolismo , Peptídeos/metabolismo , Hipotálamo/metabolismo
2.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328356

RESUMO

The replacement of fishmeal by plant proteins in aquafeeds imposes the use of synthetic methionine (MET) sources to balance the amino acid composition of alternative diets and so to meet the metabolic needs of fish of agronomic interest such as rainbow trout (RT-Oncorhynchus mykiss). Nonetheless, debates still exist to determine if one MET source is more efficiently used than another by fish. To address this question, the use of fish cell lines appeared a convenient strategy, since it allowed to perfectly control cell growing conditions notably by fully depleting MET from the media and studying which MET source is capable to restore cell growth/proliferation and metabolism when supplemented back. Thus, results of cell proliferation assays, Western blots, RT-qPCR and liquid chromatography analyses from two RT liver-derived cell lines revealed a better absorption and metabolization of DL-MET than DL-Methionine Hydroxy Analog (MHA) with the activation of the mechanistic Target Of Rapamycin (mTOR) pathway for DL-MET and the activation of integrated stress response (ISR) pathway for MHA. Altogether, the results clearly allow to conclude that both synthetic MET sources are not biologically equivalent, suggesting similar in vivo effects in RT liver and, therefore, questioning the MHA efficiencies in other RT tissues.


Assuntos
Oncorhynchus mykiss , Ração Animal/análise , Animais , Linhagem Celular , Dieta , Hepatócitos/metabolismo , Fígado/metabolismo , Metionina/análogos & derivados , Metionina/química , Oncorhynchus mykiss/metabolismo
3.
Mol Biol Evol ; 37(10): 2887-2899, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32437540

RESUMO

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.


Assuntos
Autofagia Mediada por Chaperonas , Evolução Molecular , Proteína 2 de Membrana Associada ao Lisossomo/genética , Oryzias/genética , Animais , Metabolismo dos Carboidratos , Linhagem Celular , Éxons , Fibroblastos/fisiologia , Humanos , Metabolismo dos Lipídeos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Oryzias/metabolismo
4.
J Stroke Cerebrovasc Dis ; 30(12): 106148, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34644665

RESUMO

Studies have demonstrated the beneficial effects of light- and moderate-intensity physical exercise on the nervous system of animals with cerebral ischemia. To investigate the effects of two high-intensity physical exercise protocols, standardized for resistance and strength gain, in rats trained before cerebral ischemia induced by Bilateral Common Carotid Artery Occlusion (BCCAO). Forty-eight male Wistar rats were divided into two groups: with ischemia and without ischemia (sham). Both groups were subdivided into animals that performed high-intensity exercises in the muscle strength modality (I+Ex2; Sham+Ex2; n=16); animals submitted to high-intensity exercises in the aerobic modality (I+Ex1; Sham+Ex1; n=16), and animals that did not practice physical exercises - sedentary (I+Sed; Sham+Sed, n=16). Cerebral ischemia was induced using the BCCAO model. The physical training program used before the procedure was of high intensity, in the aerobic and muscular strength modalities, and was performed using a vertical ladder, for 4 weeks, 5 days per week. In order to process and stain the brain tissue, the Nissl method was used for neuron labeling and quantification in the cortex, striatum, and hippocampus. As for the animals' body weight and the heart weight differences were found between the groups I+Ex2 and Sham+Ex2 (p<0.05). Data on neuron quantification in the cerebral cortex, dentate gyrus, and right and left striatum revealed significant differences between groups. High-intensity physical training in the strength gain modality promotes significant damage to the animal's brain when performed prior to BCCAO-induced cerebral ischemia.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Condicionamento Físico Animal , Animais , Lesões Encefálicas/epidemiologia , Isquemia Encefálica/etiologia , Doenças das Artérias Carótidas/complicações , Masculino , Condicionamento Físico Animal/efeitos adversos , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar
5.
Blood ; 132(19): 2067-2077, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30213874

RESUMO

The ephrin transmembrane receptor family of tyrosine kinases is involved in platelet function. We report the first EPHB2 variant affecting platelets in 2 siblings (P1 and P2) from a consanguineous family with recurrent bleeding and normal platelet counts. Whole-exome sequencing identified a c.2233C>T variant (missense p.R745C) of the EPHB2 gene. P1 and P2 were homozygous for this variant, while their asymptomatic parents were heterozygous. The p.R745C variant within the tyrosine kinase domain was associated with defects in platelet aggregation, αIIbß3 activation, and granule secretion induced by G-protein-coupled receptor (GPCR) agonists and convulxin, as well as in thrombus formation on collagen under flow. In contrast, clot retraction, flow-dependent platelet adhesion, and spreading on fibrinogen were only mildly affected, indicating limited effects on αIIbß3 outside-in signaling. Most importantly, Lyn, Syk, and FcRγ phosphorylation, the initial steps in glycoprotein VI (GPVI) platelet signaling were drastically impaired in the absence of platelet-platelet contact, indicating a positive role for EPHB2 in GPVI activation. Likewise platelet activation by PAR4-AP showed defective Src activation, as opposed to normal protein kinase C activity and Ca2+ mobilization. Overexpression of wild-type and R745C EPHB2 variant in RBL-2H3 (rat basophilic leukemia) cells stably expressing human GPVI confirmed that EPHB2 R745C mutation impaired EPHB2 autophosphorylation but had no effect on ephrin ligand-induced EPHB2 clustering, suggesting it did not interfere with EPHB2-ephrin-mediated cell-to-cell contact. In conclusion, this novel inherited platelet disorder affecting EPHB2 demonstrates this tyrosine kinase receptor plays an important role in platelet function through crosstalk with GPVI and GPCR signaling.


Assuntos
Plaquetas/patologia , Mutação de Sentido Incorreto , Ativação Plaquetária , Receptor EphB2/genética , Adolescente , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Criança , Feminino , Humanos , Masculino , Linhagem , Adesividade Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptor EphB2/metabolismo , Transdução de Sinais , Adulto Jovem
6.
Physiol Genomics ; 51(9): 411-431, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31282806

RESUMO

Carnivorous rainbow trout exhibit prolonged postprandial hyperglycemia when fed a diet exceeding 20% carbohydrate content. This poor capacity to utilize carbohydrates has led to rainbow trout being classified as "glucose-intolerant" (GI). The metabolic phenotype has spurred research to identify the underlying cellular and molecular mechanisms of glucose intolerance, largely because carbohydrate-rich diets provide economic and ecological advantages over traditionally used fish meal, considered unsustainable for rainbow trout aquaculture operations. Evidence points to a contribution of hepatic intermediary carbohydrate and lipid metabolism, as well as upstream insulin signaling. Recently, microRNAs (miRNAs), small noncoding RNAs acting as negative posttranscriptional regulators affecting target mRNA stability and translation, have emerged as critical regulators of hepatic control of glucose-homeostasis in mammals, revealing that dysregulated hepatic miRNAs might play a role in organismal hyperglycemia in metabolic disease. To determine whether hepatic regulatory miRNA networks may contribute to GI in rainbow trout, we induced prolonged postprandial hyperglycemia in rainbow trout by using a carbohydrate-rich diet and profiled genome-wide hepatic miRNAs in hyperglycemic rainbow trout compared with fasted trout and trout fed a diet devoid of carbohydrates. Using small RNA next-generation sequencing and real-time RT-PCR validation, we identified differentially regulated hepatic miRNAs between these groups and used an in silico approach to predict bona fide mRNA targets and enriched pathways. Diet-induced hyperglycemia resulted in differential regulation of hepatic miRNAs compared with fasted fish. Some of the identified miRNAs, such as miRNA-27b-3p and miRNA-200a-3p, are known to be responsive to hyperglycemia in the liver of hyperglycemic glucose-tolerant fish and mammals, suggesting an evolutionary conserved regulation. Using Gene Ontology term-based enrichment analysis, we identify intermediate carbohydrate and lipid metabolism and insulin signaling as potential targets of posttranscriptional regulation by hyperglycemia-regulated miRNAs and provide correlative expression analysis of specific predicted miRNA-target pairs. This study identifies hepatic miRNAs in rainbow trout that exhibit differential postprandial expression in response to diets with different carbohydrate content and predicts posttranscriptionally regulated target mRNAs enriched for pathways involved in glucoregulation. Together, these results provide a framework for testable hypotheses of functional involvement of specific hepatic miRNAs in GI in rainbow trout.


Assuntos
Dieta da Carga de Carboidratos/efeitos adversos , Hiperglicemia/etiologia , Fígado/metabolismo , MicroRNAs/genética , Oncorhynchus mykiss/genética , Transcriptoma , Animais , Regulação da Expressão Gênica , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Insulina/metabolismo , Período Pós-Prandial/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
7.
Fish Shellfish Immunol ; 74: 43-51, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29288811

RESUMO

The objective of the study was to characterize the response of the antioxidant defense system against dietary prooxidant conditions in rainbow trout juveniles. Fish (initial mean weight: 62 ±â€¯1 g) were fed three fishmeal and plant-derived protein-based diets supplemented with 15% fresh fish oil (CTL diet), 15% fresh fish oil from tuna by-products (BYP diet) or 15% autooxidized fish oil (OX diet) over a 12-week growth trial at 17.5 ±â€¯0.5 °C. No significant differences in growth performance were recorded between dietary groups. Muscle lipid content was reduced and n-6 PUFA levels were increased in rainbow trout fed diets BYP and OX compared to CTL. After 12 weeks of feeding, the level of lipid peroxidation products in muscle was not affected whereas the 8-isoprostane content in liver was increased in fish fed diet OX as well as plasma total and oxidized glutathione contents. The hepatic and muscle contents for α-tocopherol were decreased in fish fed BYP and OX. Hepatic antioxidant enzyme activities and mRNA levels were not affected after 12 weeks of feeding, except for catalase and glutathione peroxidase 1b2 mRNA levels that were decreased in trout fed diet OX. Fish fed diet OX and BYP displayed also reduced cytosolic Nrf2 and both cytosolic and nuclear NF-κB protein levels in liver. The present work indicates that feeding rainbow trout juveniles with fresh fish oil from by-products or moderately oxidized lipid appears not to be detrimental to the growth performance of fish. The mechanisms beyond the control of the antioxidant defense system by moderately oxidized lipid require further investigations in rainbow trout juveniles.


Assuntos
Antioxidantes/metabolismo , Óleos de Peixe/metabolismo , Oncorhynchus mykiss/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Óleos de Peixe/administração & dosagem , Estresse Oxidativo/imunologia
8.
J Exp Biol ; 220(Pt 20): 3686-3694, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28798080

RESUMO

Environmental conditions experienced during early life play an important role in the long-term metabolic status of individuals. The present study investigated whether hypoxia exposure [for 24 h: 2.5 mg O2 l-1 (20% dissolved O2)] during the embryonic stage alone (hypoxic history) or combined with a 5-day high-carbohydrate (60%) diet stimulus at first feeding (HC dietary history) can affect glucose metabolism later in life, i.e. in juvenile fish. After 19 weeks of growth, we observed a decrease in final body mass in fish with an HC dietary history. Feed efficiency was significantly affected by both hypoxic and HC dietary histories. After a short challenge test (5 days) performed with a 30% carbohydrate diet in juvenile trout, our results also showed that, in trout that experienced hypoxic history, mRNA levels of gluconeogenic genes in liver and glucose transport genes in both liver and muscle were significantly increased at the juvenile stage. Besides, mRNA levels of glycolytic genes were decreased in fish with an HC dietary history. Both hypoxic and dietary histories barely affected plasma metabolites or global epigenetic modifications in juvenile fish after the challenge test. In conclusion, our results demonstrated that an acute hypoxic stimulus during early development alone or combined with a hyperglucidic stimulus at first feeding can modify growth performance and glucose metabolism at the molecular level in juvenile trout.


Assuntos
Glucose/metabolismo , Oncorhynchus mykiss/fisiologia , Anaerobiose , Animais , Carboidratos da Dieta/administração & dosagem , Embrião não Mamífero/fisiologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/metabolismo
9.
J Exp Biol ; 218(Pt 16): 2610-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26089527

RESUMO

Using rainbow trout fed with low-fat or high-fat diets, we aimed to determine whether the response of food intake, mRNA abundance of hypothalamic neuropeptides involved in the metabolic regulation of food intake and fatty acid sensing systems in the hypothalamus and liver are similar to results previously observed when levels of specific fatty acids were raised by injection. Moreover, we also aimed to determine if the phosphorylation state of intracellular energy sensor 5'-AMP-activated protein kinase (AMPK), and proteins involved in cellular signaling such as protein kinase B (Akt) and target of rapamycin (mTOR) display changes that could be related to fatty acid sensing and the control of food intake. The increased levels of fatty acids in the hypothalamus and liver of rainbow trout fed with a high-fat diet only partially activated fatty acid sensing systems and did not elicit changes in food intake, suggesting that the fatty acid sensing response in fish is more dependent on the presence of specific fatty acids, such as oleate or octanoate, rather than to the global increase in fatty acids. We also obtained, for the first time in fish, evidence for the presence and function of energy sensors such as AMPK and proteins involved in cellular signaling, like mTOR and Akt, in the hypothalamus. These proteins in the hypothalamus and liver were generally activated in fish fed the high-fat versus low-fat diet, suggesting that cellular signaling pathways are activated in response to the increased availability of fatty acids.


Assuntos
Gorduras na Dieta/metabolismo , Ingestão de Alimentos/fisiologia , Oncorhynchus mykiss/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Hipotálamo/metabolismo , Fígado/química , Fígado/metabolismo , Neuropeptídeos/metabolismo , RNA Mensageiro/metabolismo
10.
J Anesth ; 29(1): 47-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24957190

RESUMO

PURPOSE: Atrial arrhythmias are common after non-cardiac thoracic surgery. We tested the hypothesis that TEA reduces the risk of new-onset atrial arrhythmias after pulmonary resection. METHODS: We evaluated patients who had pulmonary resection. New-onset atrial arrhythmias detected before hospital discharge was our primary outcome. Secondary outcomes included other cardiovascular complications, pulmonary complications, time-weighted average pain score over 72 h, and duration of hospitalization. Patients with combination of general anesthesia and TEA were matched on propensity scores with patients given general anesthesia only. The matched groups were compared by use of logistic regression, linear regression, or Cox proportional hazards regression, as appropriate. RESULTS: Among 1,236 patients who had pulmonary resections, 937 received a combination of general anesthesia and TEA (TEA) and 299 received general anesthesia only (non-TEA). We successfully matched 311 TEA patients with 132 non-TEA patients. We did not find a significant association between TEA and postoperative atrial arrhythmia (odds ratio (95 % CI) of 1.05 (0.50, 2.19), P = 0.9). TEA was not significantly associated with length of hospital stay or postoperative pulmonary complications (odds ratio (95 % CI) of 0.71 (0.22, 2.29), P = 0.47). TEA patients experienced fewer postoperative cardiovascular complications; although the association was not statistically significant (odds ratio (95 % CI) of 0.30 (0.06, 1.45), P = 0.06). Time-weighted average pain scores were similar in the two groups. CONCLUSION: TEA was not associated with reduced occurrence of postoperative atrial arrhythmia. Although postoperative pulmonary complications were similar with and without TEA, TEA patients tended to experience fewer cardiovascular complications.


Assuntos
Analgesia Epidural/métodos , Arritmias Cardíacas/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Procedimentos Cirúrgicos Pulmonares/métodos , Idoso , Anestesia Geral/efeitos adversos , Anestesia Geral/métodos , Arritmias Cardíacas/etiologia , Estudos de Coortes , Feminino , Humanos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Razão de Chances , Dor Pós-Operatória/tratamento farmacológico , Complicações Pós-Operatórias/etiologia , Período Pós-Operatório , Estudos Retrospectivos , Risco
11.
Am J Physiol Regul Integr Comp Physiol ; 307(11): R1330-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274907

RESUMO

The ubiquitin-proteasome system (UPS) is recognized as the major contributor to total proteolysis in mammalian skeletal muscle, responsible for 50% or more of total protein degradation in skeletal muscle, whereas the autophagic-lysosome system (ALS) plays a more minor role. While the relative contribution of these systems to muscle loss is well documented in mammals, little is known in fish species. The current study uses myotubes derived from rainbow trout myogenic precursor cells as an in vitro model of white muscle tissue. Cells were incubated in complete or serum-deprived media or media supplemented with insulin-like growth factor-1 (IGF-1) and exposed to selective proteolytic inhibitors to determine the relative contribution of the ALS and UPS to total protein degradation in myotubes in different culture conditions. Results indicate that the ALS is responsible for 30-34% and 50% of total protein degradation in myotubes in complete and serum-deprived media, respectively. The UPS appears to contribute much less to total protein degradation at almost 4% in cells in complete media to nearly 17% in serum-deprived cells. IGF-1 decreases activity of both systems, as it inhibited the upregulation of both proteolytic systems induced by serum deprivation. The combined inhibition of both the ALS and UPS reduced degradation by a maximum of 55% in serum-deprived cells, suggesting an important contribution of other proteolytic systems to total protein degradation. Collectively, these data identify the ALS as a potential target for strategies aimed at improving muscle protein retention and fillet yield through reductions in protein degradation.


Assuntos
Autofagia/fisiologia , Lisossomos/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Oncorhynchus mykiss/fisiologia , Peptídeo Hidrolases/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteólise/efeitos dos fármacos , Ubiquitina/fisiologia , Animais , Proteínas Sanguíneas/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Inibidores de Proteases/farmacologia
12.
Br J Nutr ; 112(4): 493-503, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24877663

RESUMO

Methionine is a limiting essential amino acid in most plant-based ingredients of fish feed. In the present study, we aimed to determine the effect of dietary methionine concentrations on several main factors involved in the regulation of mRNA translation and the two major proteolytic pathways (ubiquitin-proteasome and autophagy-lysosomal) in the white muscle of rainbow trout (Oncorhynchus mykiss). The fish were fed for 6 weeks one of the three isonitrogenous diets providing three different methionine concentrations (deficient (DEF), adequate (ADQ) and excess (EXC)). At the end of the experiment, the fish fed the DEF diet had a significantly lower body weight and feed efficiency compared with those fed the EXC and ADQ diets. This reduction in the growth of fish fed the DEF diet was accompanied by a decrease in the activation of the translation initiation factors ribosomal protein S6 and eIF2α. The levels of the main autophagy-related markers (LC3-II and beclin 1) as well as the expression of several autophagy genes (atg4b, atg12 l, Uvrag, SQSTM1, Mul1 and Bnip3) were higher in the white muscle of fish fed the DEF diet. Similarly, the mRNA levels of several proteasome-related genes (Fbx32, MuRF2, MuRF3, ZNF216 and Trim32) were significantly up-regulated by methionine limitation. Together, these results extend our understanding of mechanisms regulating the reduction of muscle growth induced by dietary methionine deficiency, providing valuable information on the biomarkers of the effects of low-fishmeal diets.


Assuntos
Dieta/veterinária , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metionina/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Proteínas Musculares/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Aquicultura , Autofagia , Biomarcadores/metabolismo , Deficiências Nutricionais/metabolismo , Deficiências Nutricionais/patologia , Deficiências Nutricionais/fisiopatologia , Deficiências Nutricionais/veterinária , Dieta/efeitos adversos , Ingestão de Energia , Doenças dos Peixes/etiologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/fisiopatologia , Proteínas de Peixes/genética , França , Lisossomos/metabolismo , Metionina/administração & dosagem , Metionina/deficiência , Desenvolvimento Muscular , Fibras Musculares de Contração Rápida/patologia , Proteínas Musculares/genética , Doenças Musculares/etiologia , Doenças Musculares/veterinária , Oncorhynchus mykiss/crescimento & desenvolvimento , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Aumento de Peso
13.
Fish Physiol Biochem ; 40(2): 427-43, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23990285

RESUMO

The regulation of gene expression by nutrients is an important mechanism governing energy storage and growth in most animals, including fish. At present, very few genes that regulate intermediary metabolism have been identified in barramundi, nor is there any understanding of their nutritional regulation. In this study, a partial barramundi liver transcriptome was assembled from next-generation sequencing data and published barramundi EST sequences. A large number of putative metabolism genes were identified in barramundi, and the changes in the expression of 24 key metabolic regulators of nutritional pathways were investigated in barramundi liver over a time series immediately after a meal of a nutritionally optimised diet for this species. Plasma glucose and free amino acid levels showed a mild postprandial elevation which peaked 2 h after feeding, and had returned to basal levels within 4 or 8 h, respectively. Significant activation or repression of metabolic nuclear receptor regulator genes were observed, in combination with activation of glycolytic and lipogenic pathways, repression of the final step of gluconeogenesis and activation of the Akt-mTOR pathway. Strong correlations were identified between a number of different metabolic genes, and the coordinated co-regulation of these genes may underlie the ability of this fish to utilise dietary nutrients. Overall, these data clearly demonstrate a number of unique postprandial responses in barramundi compared with other fish species and provide a critical step in defining the response to different dietary nutrient sources.


Assuntos
Fígado/metabolismo , Perciformes/genética , Perciformes/fisiologia , Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Proteínas de Peixes/genética , Pesqueiros , Regulação da Expressão Gênica , Gluconeogênese/genética , Glicogênio/metabolismo , Glicólise/genética , Nutrigenômica , Oxirredução , Período Pós-Prandial/genética , Período Pós-Prandial/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Transcriptoma
15.
iScience ; 27(2): 108894, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318367

RESUMO

Amino acid (AA) transporters (AAT) control AA cellular fluxes across membranes, contributing to maintain cellular homeostasis. In this study, we took advantage of rainbow trout metabolic feature, which highly relies on dietary AA, to explore the cellular and physiological consequences of unbalanced diets on AAT dysregulations with a particular focus on cationic AAs (CAA), frequently underrepresented in plant-based diets. Results evidenced that 24 different CAAT are expressed in various trout tissues, part of which being subjected to AA- and CAA-dependent regulations, with y+LAT2 exchanger being prone to the strongest dysregulations. Moreover, CAA were shown to control two major AA-dependent activation pathways (namely mTOR and GCN2) but at different strength according to the CAA considered. A new feed formulation strategy has been put forward to improve specifically the CAA supplemented absorption in fish together with their growth performance. Such "precision formulation" strategy reveals high potential for nutrition practices, especially in aquaculture.

16.
Reprod Sci ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043998

RESUMO

Ovarian puncture has been widely used in assisted reproduction, but there are still gaps about its effects on ovarian morphophysiology, as well as the relationship between inflammation caused by this procedure and the follicular growth and fertility. The aim of this study was to investigate the effects of ovarian puncture on folliculogenesis and fertility. Mice (n = 24) were divided into two groups: (1) SHAM-both ovaries were exposed and repositioned and (2) Punctured-ovaries were exposed, punctured, and repositioned. After 96 h of surgery, ovaries were collected for morphofunctional analysis. New females were used for the superovulation (n = 10) and fertility assays (n = 10). Increased volumetric density of inflammatory cells-p = 0.0005, p = 0.0013; hemorrhagic foci-p < 0.0001; and inflammatory exudate-p < 0.0001 could be noticed on the punctured group, compared to SHAM. The percentage of primordial follicles was lower on the punctured ovaries (p = 0.00294). Ovarian puncture has also induced an increase in the proliferation of granulosa cells of primary (p = 0.0321) and antral follicles (p = 0.0395), and an increased apoptotic index of antral follicles (p = 0.0100). There was no influence on expression of some genes related to inflammation, collagen deposition and folliculogenesis progression. The reproductive aspects (oocyte retrieval and number of fetuses per female) were not altered (p > 0.05). Taken together, our findings strongly suggest that ovarian puncture results in a local inflammation that affects follicular growth and atresia. However, it does not affect female fertility, which strengthens the safety of this procedure.

17.
J Exp Biol ; 216(Pt 23): 4483-92, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24031053

RESUMO

To assess the potential involvement of TORC1 (target of rapamycin complex 1) signalling in the regulation of post-prandial hepatic lipid and glucose metabolism-related gene expression in trout, we employed intraperitoneal administration of rapamycin to achieve an acute inhibition of the TOR pathway. Our results reveal that rapamycin inhibits the phosphorylation of TORC1 and its downstream effectors (S6K1, S6 and 4E-BP1), without affecting Akt and the Akt substrates Forkhead-box Class O1 (FoxO1) and glycogen synthase kinase 3α/ß (GSK 3α/ß). These results indicate that acute administration of rapamycin in trout leads to the inhibition of TORC1 activation. No effect is observed on the expression of genes involved in gluconeogenesis, glycolysis and fatty acid oxidation, but hepatic TORC1 inhibition results in decreased sterol regulatory element binding protein 1c (SREBP1c) gene expression and suppressed fatty acid synthase (FAS) and glucokinase (GK) at gene expression and activity levels, indicating that FAS and GK activity is controlled at a transcriptional level in a TORC1-dependent manner. This study demonstrates for the first time in fish that post-prandial regulation of hepatic lipogenesis and glucokinase in rainbow trout requires the activation of TORC1 signalling.


Assuntos
Glucoquinase/metabolismo , Lipogênese , Fígado/metabolismo , Complexos Multiproteicos/metabolismo , Oncorhynchus mykiss/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosforilação , Período Pós-Prandial , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
18.
Br J Nutr ; 109(8): 1359-72, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22951215

RESUMO

The rainbow trout (Oncorhynchus mykiss) exhibits high dietary amino acid requirements and an apparent inefficiency to use dietary carbohydrates. Using this species, we investigated the metabolic consequences of long-term high carbohydrates/low protein feeding. Fish were fed two experimental diets containing either 20% carbohydrates/50% proteins (C20P50), or high levels of carbohydrates at the expense of proteins (35% carbohydrates/35% proteins--C35P35). The expression of genes related to hepatic and muscle glycolysis (glucokinase (GK), pyruvate kinase and hexokinase) illustrates the poor utilisation of carbohydrates irrespective of their dietary levels. The increased postprandial GK activity and the absence of inhibition of the gluconeogenic enzyme glucose-6-phosphatase activity support the hypothesis of the existence of a futile cycle around glucose phosphorylation extending postprandial hyperglycaemia. After 9 weeks of feeding, the C35P35-fed trout displayed lower body weight and feed efficiency and reduced protein and fat gains than those fed C20P50. The reduced activation of eukaryotic translation initiation factor 4-E binding protein 1 (4E-BP1) in the muscle in this C35P35 group suggests a reduction in protein synthesis, possibly contributing to the reduction in N gain. An increase in the dietary carbohydrate:protein ratio decreased the expression of genes involved in amino acid catabolism (serine dehydratase and branched-chain α-keto acid dehydrogenase E1α and E1ß), and increased that of carnitine palmitoyltransferase 1, suggesting a higher reliance on lipids as energy source in fish fed high-carbohydrate and low-protein diets. This probably also contributes to the lower fat gain. Together, these results show that different metabolic pathways are affected by a high-carbohydrate/low-protein diet in rainbow trout.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Glucoquinase/metabolismo , Fígado/metabolismo , Redes e Vias Metabólicas/fisiologia , Músculos/metabolismo , Oncorhynchus mykiss/metabolismo , Análise de Variância , Animais , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/metabolismo , Expressão Gênica , Glucoquinase/genética , Glicólise , Hiperglicemia/enzimologia , Oncorhynchus mykiss/genética , Fosforilação
19.
Gen Comp Endocrinol ; 186: 9-15, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23458288

RESUMO

Myostatin (MSTN) is well known as a potent inhibitor of muscle growth in mammals and has been shown to both inhibit the growth promoting TORC1 signaling pathway and promote Ubiquitin-Proteasomal and Autophagy-Lysosomal degradative routes. In contrast, in non-mammalian species, despite high structural conservation of MSTN sequence, functional conservation is only assumed. Here, we show that treatment of cultured trout myotubes with human recombinant MSTN (huMSTN) resulted in a significant decrease of their diameter by up to 20%, validating the use of heterologous huMSTN in our in vitro model to monitor the processes by which this growth factor promotes muscle wasting in fish. Accordingly, huMSTN stimulation prevented the full activation by IGF1 of the TORC1 signaling pathway, as revealed by the analysis of the phosphorylation status of 4E-BP1. Moreover, the levels of the proteasome-dependent protein Atrogin1 exhibited an increase in huMSTN treated cells. Likewise, we observed a stimulatory effect of huMSTN treatment on the levels of LC3-II, the more reliable marker of the Autophagy-Lysosomal degradative system. Overall, these results show for the first time in a piscine species the effect of MSTN on several atrophic and hypertrophic pathways and support a functional conservation of this growth factor between lower and higher vertebrates.


Assuntos
Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Miostatina/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Lisossomos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Truta
20.
Autophagy ; : 1-17, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798944

RESUMO

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis critical for cellular homeostasis and metabolism, and whose defects have been associated with several human pathologies. While CMA has been well described in mammals, functional evidence has only recently been documented in fish, opening up new perspectives to tackle this function under a novel angle. Now we propose to explore CMA functions in the rainbow trout (RT, Oncorhynchus mykiss), a fish species recognized as a model organism of glucose intolerance and characterized by the presence of two paralogs of the CMA-limiting factor Lamp2A (lysosomal associated membrane protein 2A). To this end, we validated a fluorescent reporter (KFERQ-PA-mCherry1) previously used to track functional CMA in mammalian cells, in an RT hepatoma-derived cell line (RTH-149). We found that incubation of cells with high-glucose levels (HG, 25 mM) induced translocation of the CMA reporter to lysosomes and/or late endosomes in a KFERQ- and Lamp2A-dependent manner, as well as reduced its half-life compared to the control (5 mM), thus demonstrating increased CMA flux. Furthermore, we observed that activation of CMA upon HG exposure was mediated by generation of mitochondrial reactive oxygen species, and involving the antioxidant transcription factor Nfe2l2/Nrf2 (nfe2 like bZIP transcription factor 2). Finally, we demonstrated that CMA plays an important protective role against HG-induced stress, primarily mediated by one of the two RT Lamp2As. Together, our results provide unequivocal evidence for CMA activity existence in RT and highlight both the role and regulation of CMA during glucose-related metabolic disorders.Abbreviations: AREs: antioxidant response elements; CHC: α-cyano -4-hydroxycinnamic acid; Chr: chromosome; CMA: chaperone-mediated autophagy; CT: control; DMF: dimethyl fumarate; Emi: endosomal microautophagy; HG: high-glucose; HMOX1: heme oxygenase 1; H2O2: hydrogen peroxide; KFERQ: lysine-phenylalanine-glutamate-arginine-glutamine; LAMP1: lysosomal associated membrane protein 1; LAMP2A: lysosomal associated membrane protein 2A; MCC: Manders' correlation coefficient; Manders' correlation coefficient Mo: morpholino oligonucleotide; NAC: N-acetyl cysteine; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; PA-mCherry: photoactivable mCherry; PCC: Pearson's correlation coefficient; ROS: reactive oxygen species; RT: rainbow trout; siRNAs: small interfering RNAs; SOD: superoxide dismutase; Tsg101: tumor susceptibility 101; TTFA: 2-thenoyltrifluoroacetone; WGD: whole-genome duplication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA