Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 30(12): 2355-2368, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31558683

RESUMO

BACKGROUND: Genetic Variants in Apolipoprotein L1 (APOL1) are associated with large increases in CKD rates among African Americans. Experiments in cell and mouse models suggest that these risk-related polymorphisms are toxic gain-of-function variants that cause kidney dysfunction, following a recessive mode of inheritance. Recent data in trypanosomes and in human cells indicate that such variants may cause toxicity through their effects on mitochondria. METHODS: To examine the molecular mechanisms underlying APOL1 risk variant-induced mitochondrial dysfunction, we generated tetracycline-inducible HEK293 T-REx cells stably expressing the APOL1 nonrisk G0 variant or APOL1 risk variants. Using these cells, we mapped the molecular pathway from mitochondrial import of APOL1 protein to APOL1-induced cell death with small interfering RNA knockdowns, pharmacologic inhibitors, blue native PAGE, mass spectrometry, and assessment of mitochondrial permeability transition pore function. RESULTS: We found that the APOL1 G0 and risk variant proteins shared the same import pathway into the mitochondrial matrix. Once inside, G0 remained monomeric, whereas risk variant proteins were prone to forming higher-order oligomers. Both nonrisk G0 and risk variant proteins bound components of the mitochondrial permeability transition pore, but only risk variant proteins activated pore opening. Blocking mitochondrial import of APOL1 risk variants largely eliminated oligomer formation and also rescued toxicity. CONCLUSIONS: Our study illuminates important differences in the molecular behavior of APOL1 nonrisk and risk variants, and our observations suggest a mechanism that may explain the very different functional effects of these variants, despite the lack of consistently observed differences in trafficking patterns, intracellular localization, or binding partners. Variant-dependent differences in oligomerization pattern may underlie APOL1's recessive, gain-of-function biology.


Assuntos
Apolipoproteína L1/genética , Falência Renal Crônica/genética , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Apolipoproteína L1/antagonistas & inibidores , Apolipoproteína L1/fisiologia , Morte Celular , Respiração Celular , Mutação com Ganho de Função , Predisposição Genética para Doença , Células HEK293 , Humanos , Falência Renal Crônica/etnologia , Falência Renal Crônica/microbiologia , Poro de Transição de Permeabilidade Mitocondrial , Multimerização Proteica , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes/metabolismo
2.
Kidney Int ; 96(6): 1303-1307, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611067

RESUMO

The Apolipoprotein L1 (APOL1) risk variants G1 and G2 are associated with high rates of kidney disease in African Americans in genetic studies. However, our understanding of APOL1 biology has lagged far behind. Here we report that engineering G1 and G2 mutations on unnatural haplotype backgrounds instead of on the specific G1 and G2 haplotype backgrounds that occur in nature profoundly alters APOL1-mediated cytotoxicity in experimental systems. Thus, in addition to helping resolve some important controversies in the APOL1 field, our demonstration of the critical influence of haplotype background may apply more generally to the study of other genetic variants that cause or predispose to human disease.


Assuntos
Apolipoproteína L1/genética , Patrimônio Genético , Nefropatias/genética , Haplótipos , Humanos
3.
Transfusion ; 52(8): 1667-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22670858

RESUMO

BACKGROUND: Dengue is the most important arboviral disease in the world. Dengue viruses (DENVs) have produced huge outbreaks in Brazil in the past 25 years with more than 5 million reported cases. During these epidemics, asymptomatic individuals infected with DENV could donate blood and serve as a source of virus dissemination in the community. Here, we studied the circulation of DENV in healthy individuals during an epidemic outbreak. STUDY DESIGN AND METHODS: The study included 500 serum samples from healthy blood donors collected at the Hemotherapy Center of Ribeirão Preto, Brazil, during a dengue outbreak. The presence of DENV RNA in the serum samples was screened by real-time reverse transcription-polymerase chain reaction (PCR). The virus serotype was determined by a heminested PCR procedure. A partial fragment of the NS5 gene sequence was used for phylogenetic analysis. RESULTS: DENV RNA was detected in the serum sample of 2 of 500 (0.4%) individuals. Both of them were infected with DENV-3 Genotype III, a virus that has been circulating in Brazil in the past decade. CONCLUSION: Individuals with asymptomatic DENV infection can be blood donors and serve as a source of virus dissemination in the community. Further studies are needed to determine the risk of recipient infection by DENV as a result of transfusion in Brazil, especially during epidemic periods.


Assuntos
Doadores de Sangue/estatística & dados numéricos , Vírus da Dengue/isolamento & purificação , Dengue/sangue , Dengue/epidemiologia , Epidemias/estatística & dados numéricos , Doenças Assintomáticas/epidemiologia , Brasil/epidemiologia , Dengue/transmissão , Vírus da Dengue/genética , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Incidência , Programas de Rastreamento/estatística & dados numéricos , Filogenia , RNA Viral/sangue , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA