Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Mater ; 22(9): 1144-1151, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37580369

RESUMO

Ferroelectricity in binary oxides including hafnia and zirconia has riveted the attention of the scientific community due to the highly unconventional physical mechanisms and the potential for the integration of these materials into semiconductor workflows. Over the last decade, it has been argued that behaviours such as wake-up phenomena and an extreme sensitivity to electrode and processing conditions suggest that ferroelectricity in these materials is strongly influenced by other factors, including electrochemical boundary conditions and strain. Here we argue that the properties of these materials emerge due to the interplay between the bulk competition between ferroelectric and structural instabilities, similar to that in classical antiferroelectrics, coupled with non-local screening mediated by the finite density of states at surfaces and internal interfaces. Via the decoupling of electrochemical and electrostatic controls, realized via environmental and ultra-high vacuum piezoresponse force microscopy, we show that these materials demonstrate a rich spectrum of ferroic behaviours including partial-pressure-induced and temperature-induced transitions between ferroelectric and antiferroelectric behaviours. These behaviours are consistent with an antiferroionic model and suggest strategies for hafnia-based device optimization.

2.
Nat Mater ; 20(1): 62-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32895506

RESUMO

Relaxor ferroelectrics, which can exhibit exceptional electromechanical coupling, are some of the most important functional materials, with applications ranging from ultrasound imaging to actuators. Since their discovery, their complex nanoscale chemical and structural heterogeneity has made the origins of their electromechanical properties extremely difficult to understand. Here, we employ aberration-corrected scanning transmission electron microscopy to quantify various types of nanoscale heterogeneities and their connection to local polarization in the prototypical relaxor ferroelectric system Pb(Mg1/3Nb2/3)O3-PbTiO3. We identify three main contributions that each depend on Ti content: chemical order, oxygen octahedral tilt and oxygen octahedral distortion. These heterogeneities are found to be spatially correlated with low-angle polar domain walls, indicating their role in disrupting long-range polarization and leading to nanoscale domain formation and the relaxor response. We further locate nanoscale regions of monoclinic-like distortion that correlate directly with Ti content and electromechanical performance. Through this approach, the connections between chemical heterogeneity, structural heterogeneity and local polarization are revealed, validating models that are needed to develop the next generation of relaxor ferroelectrics.

3.
J Microsc ; 285(2): 85-94, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34873694

RESUMO

The effect of gnomonic distortion on orientation indexing of electron backscatter diffraction patterns is explored through simulation of electron diffraction patterns for sample-to-detector geometries associated with transmission Kikuchi diffraction (TKD) and electron backscatter diffraction (EBSD). Simulated data were analysed by computing a similarity index for both Hough transformed data and simulated patterns to determine the sensitivity of each method for detecting subtle differences in the effect of gnomonic distortions on electron diffraction patterns. These results indicate that the increased gnomonic distortions in electron diffraction patterns for a TKD geometry enhance the sensitivity for detecting subtle differences in interband angles. Additionally, the utilisation of a Hough transform-based indexing approach further enhances the sensitivity.

4.
Microsc Microanal ; : 1-12, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36268839

RESUMO

Accurately determining local polarization at atomic resolution can unveil the mechanisms by which static and dynamical behaviors of the polarization occur, including domain wall motion, defect interaction, and switching mechanisms, advancing us toward the better control of polarized states in materials. In this work, we explore the potential of atomic-resolution scanning transmission electron microscopy to measure the projected local polarization at the unit cell length scale. ZnO and PbMg1/3Nb2/3O3 are selected as case studies, to identify microscope parameters that can significantly affect the accuracy of the measured projected polarization vector. Different STEM imaging modalities are used to determine the location of the atomic columns, which, when combined with the Born effective charges, allows for the calculation of local polarization. Our results indicate that differentiated differential phase contrast (dDPC) imaging enhances the accuracy of measuring local polarization relative to other imaging modalities, such as annular bright-field or integrated-DPC imaging. For instance, under certain experimental conditions, the projected spontaneous polarization for ZnO can be calculated with 1.4% error from the theoretical value. Furthermore, we quantify the influence of sample thickness, probe defocus, and crystal mis-tilt on the relative errors of the calculated polarization.

5.
Microsc Microanal ; 29(Supplement_1): 1796-1797, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613984
7.
Analyst ; 140(18): 6330-4, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26229989

RESUMO

One of the long-standing challenges in studying structure-property relationships in latex films is to directly characterize the size and morphology of the corresponding polymer particles, especially the particles with low film formation temperatures. Here we present an in situ transmission electron microscopy (TEM) study that allows characterization of film-forming latex particles in solution. Liquid cell TEM provides the opportunity to image latexes with a range of particle sizes and glass transition temperatures. Together with a staining technique, it can also be used as a tool to characterize the internal structure of particles in solution.

8.
ACS Appl Mater Interfaces ; 16(4): 4873-4885, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232043

RESUMO

Ba-rich compositions in the BaxSr1-xMnO3 (BSMO) cubic perovskite (3C) system are magnetic ferroelectrics and are of interest for their strong magnetoelectric coupling. Beyond x = 0.5, they only form in hexagonal polymorphs. Here, the 3C phase boundary is pushed to Ba0.6Sr0.4MnO3 for the thin films. Using regular pulsed laser deposition (rPLD), 3C Ba0.6Sr0.4MnO3 could be epitaxially stabilized on DyScO3 (101)o substrates by using a 0.1% O2/99.9% N2 gas mixture. However, the 3C phase was mixed with the 4H polymorph for films 24 nm thick and above, and the films were relatively rough. To improve flatness and phase purity, changes in growth kinetics were investigated and interval PLD (iPLD) was especially effective. In iPLD, deposition is interrupted after completion of approximately one monolayer, and the deposit is annealed for a specific period of time before repeating. Both film flatness and, more importantly, the volume of the 3C polymorph improved with iPLD, resulting in 40 nm single-phase films. The results imply that iPLD improves the persistent nucleation of highly metastable phases and offers a new approach to epitaxial stabilization of novel materials, including more Ba-rich BSMO compositions in the 3C structure.

9.
ACS Appl Eng Mater ; 2(5): 1411-1423, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38808269

RESUMO

In this work, we present a facile and scalable hydrolysis-based route for the synthesis of copper-doped TiO2 particles for highly effective light-activated antiviral and antibacterial applications. The performance of the synthesized Cu-doped TiO2 particles is then evaluated using solution-phase antimicrobial photodynamic inactivation assays. We demonstrate that the Cu-doped TiO2 particles can successfully inactivate a wide range of pathogens with exposure to light for 90 min, including bacteria ranging from methicillin-resistant Staphylococcus aureus (99.9999%, ∼6 log units) to Klebsiella pneumoniae (99.93%, ∼3.3 log units), and viruses including feline calicivirus (99.94%, ∼3.4 log units) and HCoV-229E (99.996%, ∼4.6 log units), with the particles demonstrating excellent robustness toward photobleaching. Furthermore, a spray-coated polymer film, loaded with the synthesized Cu-doped TiO2 particles achieves inactivation of methicillin-resistant S. aureus up to 99.998% (∼4.8 log units). The presented results provide a clear advance forward in the use of metal-doped TiO2 for aPDI applications, including the scalable synthesis (kg/day) of well-characterized and robust particles, their facile incorporation into a nontoxic, photostable coating that may be easily and cheaply applied to a multitude of surfaces, and a broad efficacy against drug-resistant Gram-positive and Gram-negative bacteria, as well as against enveloped and nonenveloped viruses.

10.
Science ; 380(6649): 1034-1038, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289886

RESUMO

Ferroelectric wurtzites have the potential to revolutionize modern microelectronics because they are easily integrated with multiple mainstream semiconductor platforms. However, the electric fields required to reverse their polarization direction and unlock electronic and optical functions need substantial reduction for operational compatibility with complementary metal-oxide semiconductor (CMOS) electronics. To understand this process, we observed and quantified real-time polarization switching of a representative ferroelectric wurtzite (Al0.94B0.06N) at the atomic scale with scanning transmission electron microscopy. The analysis revealed a polarization reversal model in which puckered aluminum/boron nitride rings in the wurtzite basal planes gradually flatten and adopt a transient nonpolar geometry. Independent first-principles simulations reveal the details and energetics of the reversal process through an antipolar phase. This model and local mechanistic understanding are a critical initial step for property engineering efforts in this emerging material class.

11.
ACS Nano ; 17(23): 23944-23954, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38015799

RESUMO

Phase identification in HfO2-based thin films is a prerequisite to understanding the mechanisms stabilizing the ferroelectric phase in these materials, which hold great promise in next-generation nonvolatile memory and computing technology. While grazing-incidence X-ray diffraction is commonly employed for this purpose, it has difficulty unambiguously differentiating between the ferroelectric phase and other metastable phases that may exist due to similarities in the d-spacings, their low intensities, and the overlapping of reflections. Infrared signatures provide an alternative route. However, their use in phase identification remains limited because phase control has overwhelmingly been accomplished via substituents, thereby convoluting infrared signatures between the substituents and the phase changes that they induce. Herein, we report the infrared optical responses of three undoped hafnium oxide films where annealing conditions have been used to create films consisting primarily of the ferroelectric polar orthorhombic Pca21, antipolar orthorhombic Pbca, and monoclinic P21/c phases, as was confirmed via transmission electron microscopy (TEM), UV-visible optical properties, and electrical property measurements. Vibrational signatures acquired from synchrotron nano-Fourier transform infrared spectroscopy (nano-FTIR) are shown to be capable of differentiating between the phases in a nondestructive, rapid, and nanoscale manner. The utility of nano-FTIR is illustrated for a film exhibiting an antiferroelectric polarization response. In this sample, it is proven that this behavior results from the Pbca phase rather than the often-cited tetragonal phase. By demonstrating that IR spectroscopy can unambiguously distinguish phases in this material, this work establishes a tool needed to isolate the factors dictating the ferroelectric phase stability in HfO2-based materials.

12.
Nanotechnology ; 20(2): 025607, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19417276

RESUMO

The effect of Sb addition on the growth rate and structural properties of Si nanowires synthesized by vapor-liquid-solid growth was investigated. The nanowire growth rate was reduced by an order of magnitude following the addition of a low concentration pulse of trimethylantimony (TMSb) to the gas phase during growth. Transmission electron microscopy analysis revealed that the wires had a thick amorphous coating ( approximately 8 nm) around the catalyst particle and a distorted catalyst shape. Energy-dispersive x-ray spectroscopy showed the presence of trace amounts of Sb in the amorphous coating around the catalyst and at the catalyst-wire interface. Antimony was also found to be incorporated in the Si nanowires with a peak in the Sb concentration measured at the initial point where the TMSb pulse was added to the gas stream. The significant reduction in wire growth rate was attributed to Sb segregation at the vapor-liquid and liquid-solid interfaces which results in a change in interfacial energies and a reduction in the rate of Si incorporation at these interfaces.

13.
Science ; 364(6437): 264-268, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31000659

RESUMO

High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d 33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d 33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.

14.
J Nanosci Nanotechnol ; 7(2): 717-20, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17450821

RESUMO

Si0.48Ge0.52/Si tip/nanowire heterostructures were grown by pulsed laser vaporization (PLV) at a growth temperature of 1100 degrees C. Ge diffusion in [111]-growth Si nanowires was studied for different post-synthesis annealing temperatures from 200 degrees C to 800 degrees C. Ge composition profiles were quantified by energy-dispersive X-ray spectroscopy in a transmission electron microscope. The compositional profiles were modeled by a limited-source diffusion model to extract temperature-dependent diffusion coefficients. The Ge diffusion coefficients followed an Arrhenius relationship with an activation energy of 0.622 +/- 0.050 eV. This rather low activation energy barrier is similar to the previously reported activation energy barrier of 0.67 eV for Ge surface diffusion on Si, suggesting that surface diffusion may dominate in nanowires at this length scale.


Assuntos
Germânio/química , Nanotecnologia/métodos , Nanofios/química , Silício/química , Difusão , Microanálise por Sonda Eletrônica , Temperatura Alta , Lasers , Microscopia Eletrônica de Transmissão , Nanofios/ultraestrutura , Semicondutores
15.
Ultramicroscopy ; 173: 47-51, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27907831

RESUMO

A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO3 single crystals. Further, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.

16.
Materials (Basel) ; 9(11)2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-28774003

RESUMO

We report on the detection of electric field-induced second harmonic generation (EFISHG) from the anode interfaces of reduced and oxidized Fe-doped SrTiO3 (Fe:STO) single crystals. For the reduced crystal, we observe steady enhancements of the susceptibility components as the imposed dc-voltage increases. The enhancements are attributed to a field-stabilized electrostriction, leading to Fe:Ti-O bond stretching and bending in Fe:Ti-O6 octahedra. For the oxidized crystal, no obvious structural changes are observed below 16 kV/cm. Above 16 kV/cm, a sharp enhancement of the susceptibilities occurs due to local electrostrictive deformations in response to oxygen vacancy migrations away from the anode. Differences between the reduced and oxidized crystals are explained by their relative oxygen vacancy and free carrier concentrations which alter internal electric fields present at the Pt/Fe:STO interfaces. Our results show that the optical SHG technique is a powerful tool for detecting structural changes near perovskite-based oxide interfaces due to field-driven oxygen vacancy migration.

17.
Nat Commun ; 6: 8485, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26415623

RESUMO

Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering.

18.
Sci Rep ; 5: 11772, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26134420

RESUMO

Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.

19.
Nat Nanotechnol ; 10(8): 687-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26167767

RESUMO

Anelastic materials exhibit gradual full recovery of deformation once a load is removed, leading to dissipation of internal mechanical energy. As a consequence, anelastic materials are being investigated for mechanical damping applications. At the macroscopic scale, however, anelasticity is usually very small or negligible, especially in single-crystalline materials. Here, we show that single-crystalline ZnO and p-doped Si nanowires can exhibit anelastic behaviour that is up to four orders of magnitude larger than the largest anelasticity observed in bulk materials, with a timescale on the order of minutes. In situ scanning electron microscope tests of individual nanowires showed that, on removal of the bending load and instantaneous recovery of the elastic strain, a substantial portion of the total strain gradually recovers with time. We attribute this large anelasticity to stress-gradient-induced migration of point defects, as supported by electron energy loss spectroscopy measurements and also by the fact that no anelastic behaviour could be observed under tension. We model this behaviour through a theoretical framework by point defect diffusion under a high strain gradient and short diffusion distance, expanding the classic Gorsky theory. Finally, we show that ZnO single-crystalline nanowires exhibit a high damping merit index, suggesting that crystalline nanowires with point defects are promising materials for energy damping applications.

20.
J Nanosci Nanotechnol ; 3(1-2): 93-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12908235

RESUMO

Well-aligned nitrogen-doped multiwall carbon nanotube arrays have been successfully grown over large areas on quartz and silicon wafers by floating-catalyst chemical vapor deposition at low temperatures (600 degrees C). These nitrogen-including nanotubes, derived from pyridine-ferrocene mixtures, have smaller outer diameters but larger inner diameters compared with carbon nanotubes grown from a xylene-ferrocene mixture under similar conditions. The N-doped nanotubes exhibit bamboo-like structures in the core. Elemental analysis and electron energy loss spectroscopy analysis show that the as-prepared nanotubes contain as much as 2.62 wt.% N, with most of the N concentrated in the inner few shells of the nanotube. Such large-scale arrays of well-aligned N-doped nanotubes on silicon wafers have a current density as high as 23.8 mA/cm2 at an applied electric field of 17 V/micron, which can be further improved by patterning the tubes and coating the silicon substrate with a conductive thin metal film for the fabrication of flat panel displays.


Assuntos
Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nitrogênio/química , Condutividade Elétrica , Eletroquímica/métodos , Temperatura Alta , Substâncias Macromoleculares , Teste de Materiais/métodos , Conformação Molecular , Nanotubos de Carbono/isolamento & purificação , Quartzo/química , Silício/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA