Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(11): 1776-1787, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908112

RESUMO

Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease caused by a splicing mutation in the gene encoding Elongator complex protein 1 (ELP1, also known as IKBKAP). This mutation results in tissue-specific skipping of exon 20 with a corresponding reduction of ELP1 protein, predominantly in the central and peripheral nervous system. Although FD patients have a complex neurological phenotype caused by continuous depletion of sensory and autonomic neurons, progressive visual decline leading to blindness is one of the most problematic aspects of the disease, as it severely affects their quality of life. To better understand the disease mechanism as well as to test the in vivo efficacy of targeted therapies for FD, we have recently generated a novel phenotypic mouse model, TgFD9; IkbkapΔ20/flox. This mouse exhibits most of the clinical features of the disease and accurately recapitulates the tissue-specific splicing defect observed in FD patients. Driven by the dire need to develop therapies targeting retinal degeneration in FD, herein, we comprehensively characterized the progression of the retinal phenotype in this mouse, and we demonstrated that it is possible to correct ELP1 splicing defect in the retina using the splicing modulator compound (SMC) BPN-15477.


Assuntos
Disautonomia Familiar , Peptídeos e Proteínas de Sinalização Intracelular , Doenças Neurodegenerativas , Doenças do Nervo Óptico , Células Ganglionares da Retina , Animais , Modelos Animais de Doenças , Disautonomia Familiar/patologia , Humanos , Camundongos , Doenças Neurodegenerativas/patologia , Doenças do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia
2.
Neurobiol Dis ; 162: 105581, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871739

RESUMO

Mitochondria dysfunction occurs in the aging brain as well as in several neurodegenerative disorders and predisposes neuronal cells to enhanced sensitivity to neurotoxins. 3-nitropropionic acid (3-NP) is a naturally occurring plant and fungal neurotoxin that causes neurodegeneration predominantly in the striatum by irreversibly inhibiting the tricarboxylic acid respiratory chain enzyme, succinate dehydrogenase (SDH), the main constituent of the mitochondria respiratory chain complex II. Significantly, although 3-NP-induced inhibition of SDH occurs in all brain regions, neurodegeneration occurs primarily and almost exclusively in the striatum for reasons still not understood. In rodents, 3-NP-induced striatal neurodegeneration depends on the strain background suggesting that genetic differences among genotypes modulate toxicant variability and mechanisms that underlie 3-NP-induced neuronal cell death. Using the large BXD family of recombinant inbred (RI) strains we demonstrate that variants in Ccnd1 - the gene encoding cyclin D1 - of the DBA/2 J parent underlie the resistance to 3-NP-induced striatal neurodegeneration. In contrast, the Ccnd1 variant inherited from the widely used C57BL/6 J parental strain confers sensitivity. Given that cellular stress triggers induction of cyclin D1 expression followed by cell-cycle re-entry and consequent neuronal cell death, we sought to determine if the C57BL/6 J and DBA/2 J Ccnd1 variants are differentially modulated in response to 3-NP. We confirm that 3-NP induces cyclin D1 expression in striatal neuronal cells of C57BL/6 J, but this response is blunted in the DBA/2 J. We further show that striatal-specific alternative processing of a highly conserved 3'UTR negative regulatory region of Ccnd1 co-segregates with the C57BL/6 J parental Ccnd1 allele in BXD strains and that its differential processing accounts for sensitivity or resistance to 3-NP. Our results indicate that naturally occurring Ccnd1 variants may play a role in the variability observed in neurodegenerative disorders involving mitochondria complex II dysfunction and point to cyclin D1 as a possible therapeutic target.


Assuntos
Ciclina D1 , Propionatos , Corpo Estriado/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Nitrocompostos/metabolismo , Nitrocompostos/toxicidade , Propionatos/metabolismo , Propionatos/toxicidade
3.
Am J Hum Genet ; 104(4): 638-650, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905397

RESUMO

Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a splice mutation in Elongator complex protein 1 (ELP1, also known as IKBKAP); this mutation leads to variable skipping of exon 20 and to a drastic reduction of ELP1 in the nervous system. Clinically, many of the debilitating aspects of the disease are related to a progressive loss of proprioception; this loss leads to severe gait ataxia, spinal deformities, and respiratory insufficiency due to neuromuscular incoordination. There is currently no effective treatment for FD, and the disease is ultimately fatal. The development of a drug that targets the underlying molecular defect provides hope that the drastic peripheral neurodegeneration characteristic of FD can be halted. We demonstrate herein that the FD mouse TgFD9;IkbkapΔ20/flox recapitulates the proprioceptive impairment observed in individuals with FD, and we provide the in vivo evidence that postnatal correction, promoted by the small molecule kinetin, of the mutant ELP1 splicing can rescue neurological phenotypes in FD. Daily administration of kinetin starting at birth improves sensory-motor coordination and prevents the onset of spinal abnormalities by stopping the loss of proprioceptive neurons. These phenotypic improvements correlate with increased amounts of full-length ELP1 mRNA and protein in multiple tissues, including in the peripheral nervous system (PNS). Our results show that postnatal correction of the underlying ELP1 splicing defect can rescue devastating disease phenotypes and is therefore a viable therapeutic approach for persons with FD.


Assuntos
Disautonomia Familiar/terapia , Cinetina/uso terapêutico , Propriocepção , Splicing de RNA , Fatores de Elongação da Transcrição/genética , Alelos , Animais , Comportamento Animal , Linhagem Celular , Cruzamentos Genéticos , Modelos Animais de Doenças , Disautonomia Familiar/genética , Éxons , Fibroblastos , Genótipo , Humanos , Íntrons , Cinetina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios/metabolismo , Fenótipo
4.
PLoS Genet ; 13(7): e1006846, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715425

RESUMO

Huntington's Disease (HD) is an autosomal dominant progressive neurodegenerative disorder characterized by cognitive, behavioral and motor dysfunctions. HD is caused by a CAG repeat expansion in exon 1 of the HD gene that is translated into an expanded polyglutamine tract in the encoded protein, huntingtin (HTT). While the most significant neuropathology of HD occurs in the striatum, other brain regions are also affected and play an important role in HD pathology. To date there is no cure for HD, and recently strategies aiming at silencing HTT expression have been initiated as possible therapeutics for HD. However, the essential functions of HTT in the adult brain are currently unknown and hence the consequence of sustained suppression of HTT expression is unpredictable and can potentially be deleterious. Using the Cre-loxP system of recombination, we conditionally inactivated the mouse HD gene homologue at 3, 6 and 9 months of age. Here we show that elimination of Htt expression in the adult mouse results in behavioral deficits, progressive neuropathological changes including bilateral thalamic calcification, and altered brain iron homeostasis.


Assuntos
Encéfalo/fisiopatologia , Calcinose/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Ferro/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Encefalopatias/genética , Encefalopatias/patologia , Calcinose/diagnóstico , Calcinose/patologia , Modelos Animais de Doenças , Éxons , Feminino , Regulação da Expressão Gênica , Técnicas de Genotipagem , Gliose/diagnóstico , Gliose/genética , Homeostase , Proteína Huntingtina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Ribossômico 18S/genética
5.
FASEB J ; : fj201800351R, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29912589

RESUMO

Pathogenesis of alcohol-related diseases such as alcoholic hepatitis involves gut barrier dysfunction, endotoxemia, and toxin-mediated cellular injury. Here we show that Lactobacillus plantarum not only blocks but also mitigates ethanol (EtOH)-induced gut and liver damage in mice. L. plantarum blocks EtOH-induced protein thiol oxidation, and down-regulation of antioxidant gene expression in colon L. plantarum also blocks EtOH-induced expression of TNF-α, IL-1ß, IL-6, monocyte chemotactic protein 1 ( MCP1), C-X-C motif chemokine ligand ( CXCL)1, and CXCL2 genes in colon. Epidermal growth factor receptor (EGFR) signaling mediates the L. plantarum-mediated protection of tight junctions (TJs) and barrier function from acetaldehyde, the EtOH metabolite, in Caco-2 cell monolayers. In mice, doxycycline-mediated expression of dominant negative EGFR blocks L. plantarum-mediated prevention of EtOH-induced TJ disruption, mucosal barrier dysfunction, oxidative stress, and inflammatory response in colon. L. plantarum blocks EtOH-induced endotoxemia as well as EtOH-induced pathologic lesions, triglyceride deposition, oxidative stress, and inflammatory responses in the liver by an EGFR-dependent mechanism. L. plantarum treatment after injury accelerated recovery from EtOH-induced TJ, barrier dysfunction, oxidative stress, and inflammatory response in colon, endotoxemia, and liver damage. Results demonstrate that L. plantarum has both preventive and therapeutic values in treatment of alcohol-induced tissue injury, particularly in alcoholic hepatitis.-Shukla, P. K., Meena, A. S., Manda, B., Gomes-Solecki, M., Dietrich, P., Dragatsis, I., Rao, R. Lactobacillus plantarum prevents and mitigates alcohol-induced disruption of colonic epithelial tight junctions, endotoxemia, and liver damage by an EGF receptor-dependent mechanism.

6.
Hum Mol Genet ; 25(6): 1116-28, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26769677

RESUMO

Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease that affects the development and survival of sensory and autonomic neurons. FD is caused by an mRNA splicing mutation in intron 20 of the IKBKAP gene that results in a tissue-specific skipping of exon 20 and a corresponding reduction of the inhibitor of kappaB kinase complex-associated protein (IKAP), also known as Elongator complex protein 1. To date, several promising therapeutic candidates for FD have been identified that target the underlying mRNA splicing defect, and increase functional IKAP protein. Despite these remarkable advances in drug discovery for FD, we lacked a phenotypic mouse model in which we could manipulate IKBKAP mRNA splicing to evaluate potential efficacy. We have, therefore, engineered a new mouse model that, for the first time, will permit to evaluate the phenotypic effects of splicing modulators and provide a crucial platform for preclinical testing of new therapies. This new mouse model, TgFD9; Ikbkap(Δ20/flox) was created by introducing the complete human IKBKAP transgene with the major FD splice mutation (TgFD9) into a mouse that expresses extremely low levels of endogenous Ikbkap (Ikbkap(Δ20/flox)). The TgFD9; Ikbkap(Δ20/flox) mouse recapitulates many phenotypic features of the human disease, including reduced growth rate, reduced number of fungiform papillae, spinal abnormalities, and sensory and sympathetic impairments, and recreates the same tissue-specific mis-splicing defect seen in FD patients. This is the first mouse model that can be used to evaluate in vivo the therapeutic effect of increasing IKAP levels by correcting the underlying FD splicing defect.


Assuntos
Modelos Animais de Doenças , Disautonomia Familiar/metabolismo , Disautonomia Familiar/patologia , Processamento Alternativo , Animais , Vias Autônomas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Disautonomia Familiar/genética , Éxons , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Íntrons , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Splicing de RNA/genética , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/metabolismo
7.
Biochim Biophys Acta ; 1860(4): 765-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26721332

RESUMO

BACKGROUND: Disruption of epithelial tight junctions (TJ), gut barrier dysfunction and endotoxemia play crucial role in the pathogenesis of alcoholic tissue injury. Occludin, a transmembrane protein of TJ, is depleted in colon by alcohol. However, it is unknown whether occludin depletion influences alcoholic gut and liver injury. METHODS: Wild type (WT) and occludin deficient (Ocln(-/-)) mice were fed 1-6% ethanol in Lieber-DeCarli diet. Gut permeability was measured by vascular-to-luminal flux of FITC-inulin. Junctional integrity was analyzed by confocal microscopy. Liver injury was assessed by plasma transaminase, histopathology and triglyceride analyses. The effect of occludin depletion on acetaldehyde-induced TJ disruption was confirmed in Caco-2 cell monolayers. RESULTS: Ethanol feeding significantly reduced body weight gain in Ocln(-/-) mice. Ethanol increased inulin permeability in colon of both WT and Ocln(-/-) mice, but the effect was 4-fold higher in Ocln(-/-) mice. The gross morphology of colonic mucosa was unaltered, but ethanol disrupted the actin cytoskeleton, induced redistribution of occludin, ZO-1, E-cadherin and ß-catenin from the junctions and elevated TLR4, which was more severe in Ocln(-/-) mice. Occludin knockdown significantly enhanced acetaldehyde-induced TJ disruption and barrier dysfunction in Caco-2 cell monolayers. Ethanol significantly increased liver weight and plasma transaminase activity in Ocln(-/-) mice, but not in WT mice. Histological analysis indicated more severe lesions and fat deposition in the liver of ethanol-fed Ocln(-/-) mice. Ethanol-induced elevation of liver triglyceride was also higher in Ocln(-/-) mice. CONCLUSION: This study indicates that occludin deficiency increases susceptibility to ethanol-induced colonic mucosal barrier dysfunction and liver damage in mice.


Assuntos
Colo/metabolismo , Etanol/efeitos adversos , Mucosa Intestinal/metabolismo , Hepatopatias/metabolismo , Ocludina/deficiência , Junções Íntimas/metabolismo , Animais , Células CACO-2 , Colo/patologia , Etanol/farmacologia , Humanos , Mucosa Intestinal/patologia , Inulina/farmacocinética , Inulina/farmacologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/patologia , Camundongos , Camundongos Knockout , Ocludina/metabolismo , Permeabilidade/efeitos dos fármacos , Junções Íntimas/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
8.
Genet Mol Biol ; 39(4): 497-514, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27561110

RESUMO

Hereditary Sensory and Autonomic Neuropathies (HSANs) compose a heterogeneous group of genetic disorders characterized by sensory and autonomic dysfunctions. Familial Dysautonomia (FD), also known as HSAN III, is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population. The major features of the disease are already present at birth and are attributed to abnormal development and progressive degeneration of the sensory and autonomic nervous systems. Despite clinical interventions, the disease is inevitably fatal. FD is caused by a point mutation in intron 20 of the IKBKAP gene that results in severe reduction in expression of IKAP, its encoded protein. In vitro and in vivo studies have shown that IKAP is involved in multiple intracellular processes, and suggest that failed target innervation and/or impaired neurotrophic retrograde transport are the primary causes of neuronal cell death in FD. However, FD is far more complex, and appears to affect several other organs and systems in addition to the peripheral nervous system. With the recent generation of mouse models that recapitulate the molecular and pathological features of the disease, it is now possible to further investigate the mechanisms underlying different aspects of the disorder, and to test novel therapeutic strategies.

9.
Alcohol Clin Exp Res ; 39(8): 1465-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26173414

RESUMO

BACKGROUND: Acetaldehyde, the toxic ethanol (EtOH) metabolite, disrupts intestinal epithelial barrier function. Aldehyde dehydrogenase (ALDH) detoxifies acetaldehyde into acetate. Subpopulations of Asians and Native Americans show polymorphism with loss-of-function mutations in ALDH2. We evaluated the effect of ALDH2 deficiency on EtOH-induced disruption of intestinal epithelial tight junctions and adherens junctions, gut barrier dysfunction, and liver injury. METHODS: Wild-type and ALDH2-deficient mice were fed EtOH (1 to 6%) in Lieber-DeCarli diet for 4 weeks. Gut permeability in vivo was measured by plasma-to-luminal flux of FITC-inulin, tight junction and adherens junction integrity was analyzed by confocal microscopy, and liver injury was assessed by the analysis of plasma transaminase activity, histopathology, and liver triglyceride. RESULTS: EtOH feeding elevated colonic mucosal acetaldehyde, which was significantly greater in ALDH2-deficient mice. ALDH2(-/-) mice showed a drastic reduction in the EtOH diet intake. Therefore, this study was continued only in wild-type and ALDH2(+/-) mice. EtOH feeding elevated mucosal inulin permeability in distal colon, but not in proximal colon, ileum, or jejunum of wild-type mice. In ALDH2(+/-) mice, EtOH-induced inulin permeability in distal colon was not only higher than that in wild-type mice, but inulin permeability was also elevated in the proximal colon, ileum, and jejunum. Greater inulin permeability in distal colon of ALDH2(+/-) mice was associated with a more severe redistribution of tight junction and adherens junction proteins from the intercellular junctions. In ALDH2(+/-) mice, but not in wild-type mice, EtOH feeding caused a loss of junctional distribution of tight junction and adherens junction proteins in the ileum. Histopathology, plasma transaminases, and liver triglyceride analyses showed that EtOH-induced liver damage was significantly greater in ALDH2(+/-) mice compared to wild-type mice. CONCLUSIONS: These data demonstrate that ALDH2 deficiency enhances EtOH-induced disruption of intestinal epithelial tight junctions, barrier dysfunction, and liver damage.


Assuntos
Aldeído Desidrogenase/deficiência , Etanol/toxicidade , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Aldeído-Desidrogenase Mitocondrial , Animais , Fígado Gorduroso/patologia , Feminino , Absorção Gastrointestinal/efeitos dos fármacos , Absorção Gastrointestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Junções Íntimas/patologia
10.
Hum Mol Genet ; 21(23): 5078-90, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22922231

RESUMO

Hereditary sensory and autonomic neuropathies (HSANs) encompass a group of genetically inherited disorders characterized by sensory and autonomic dysfunctions. Familial dysautonomia (FD), also known as HSAN type III, is an autosomal recessive disorder that affects 1/3600 live births in the Ashkenazi Jewish population. The disease is caused by abnormal development and progressive degeneration of the sensory and autonomic nervous systems and is inevitably fatal, with only 50% of patients reaching the age of 40. FD is caused by a mutation in intron 20 of the Ikbkap gene that results in severe reduction in the expression of its encoded protein, inhibitor of kappaB kinase complex-associated protein (IKAP). Although the mutation that causes FD was identified in 2001, so far there is no appropriate animal model that recapitulates the disorder. Here, we report the generation and characterization of the first mouse models for FD that recapitulate the molecular and pathological features of the disease. Important for therapeutic interventions is also our finding that a slight increase in IKAP levels is enough to ameliorate the phenotype and increase the life span. Understanding the mechanisms underlying FD will provide insights for potential new therapeutic interventions not only for FD, but also for other peripheral neuropathies.


Assuntos
Proteínas de Transporte/genética , Modelos Animais de Doenças , Disautonomia Familiar/genética , Disautonomia Familiar/metabolismo , Regulação da Expressão Gênica , Camundongos , Alelos , Animais , Comportamento Animal , Proteínas de Transporte/metabolismo , Disautonomia Familiar/patologia , Feminino , Gânglios Sensitivos/metabolismo , Gânglios Sensitivos/patologia , Gânglios Simpáticos/metabolismo , Gânglios Simpáticos/patologia , Ordem dos Genes , Marcação de Genes , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Fenótipo
11.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993570

RESUMO

The peripheral nervous system (PNS) is essential for proper body function. A high percentage of the population suffer nerve degeneration or peripheral damage. For example, over 40% of patients with diabetes or undergoing chemotherapy develop peripheral neuropathies. Despite this, there are major gaps in the knowledge of human PNS development and therefore, there are no available treatments. Familial Dysautonomia (FD) is a devastating disorder that specifically affects the PNS making it an ideal model to study PNS dysfunction. FD is caused by a homozygous point mutation in ELP1 leading to developmental and degenerative defects in the sensory and autonomic lineages. We previously employed human pluripotent stem cells (hPSCs) to show that peripheral sensory neurons (SNs) are not generated efficiently and degenerate over time in FD. Here, we conducted a chemical screen to identify compounds able to rescue this SN differentiation inefficiency. We identified that genipin, a compound prescribed in Traditional Chinese Medicine for neurodegenerative disorders, restores neural crest and SN development in FD, both in the hPSC model and in a FD mouse model. Additionally, genipin prevented FD neuronal degeneration, suggesting that it could be offered to patients suffering from PNS neurodegenerative disorders. We found that genipin crosslinks the extracellular matrix, increases the stiffness of the ECM, reorganizes the actin cytoskeleton, and promotes transcription of YAP-dependent genes. Finally, we show that genipin enhances axon regeneration in an in vitro axotomy model in healthy sensory and sympathetic neurons (part of the PNS) and in prefrontal cortical neurons (part of the central nervous system, CNS). Our results suggest genipin can be used as a promising drug candidate for treatment of neurodevelopmental and neurodegenerative diseases, and as a enhancer of neuronal regeneration.

12.
Hum Mol Genet ; 18(1): 142-50, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18838463

RESUMO

Huntingtin (htt) is a 350 kDa protein of unknown function, with no homologies with other known proteins. Expansion of a polyglutamine stretch at the N-terminus of htt causes Huntington's disease (HD), a dominant neurodegenerative disorder. Although it is generally accepted that HD is caused primarily by a gain-of-function mechanism, recent studies suggest that loss-of-function may also be part of HD pathogenesis. Huntingtin is an essential protein in the mouse since inactivation of the mouse HD homolog (Hdh) gene results in early embryonic lethality. Huntingtin is widely expressed in embryogenesis, and associated with a number of interacting proteins suggesting that htt may be involved in several processes including morphogenesis, neurogenesis and neuronal survival. To further investigate the role of htt in these processes, we have inactivated the Hdh gene in Wnt1 cell lineages using the Cre-loxP system of recombination. Here we show that conditional inactivation of the Hdh gene in Wnt1 cell lineages results in congenital hydrocephalus, implicating huntingtin for the first time in the regulation of cerebral spinal fluid (CSF) homeostasis. Our results show that hydrocephalus in mice lacking htt in Wnt1 cell lineages is associated with increase in CSF production by the choroid plexus, and abnormal subcommissural organ.


Assuntos
Linhagem da Célula , Hidrocefalia/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Órgão Subcomissural/anormalidades , Proteína Wnt1/metabolismo , Animais , Plexo Corióideo/anormalidades , Plexo Corióideo/embriologia , Plexo Corióideo/metabolismo , Feminino , Inativação Gênica , Humanos , Proteína Huntingtina , Hidrocefalia/embriologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Órgão Subcomissural/embriologia , Órgão Subcomissural/metabolismo , Proteína Wnt1/genética
13.
Nat Commun ; 12(1): 5878, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620845

RESUMO

Microtubule (MT)-based transport is an evolutionary conserved process finely tuned by posttranslational modifications. Among them, α-tubulin acetylation, primarily catalyzed by a vesicular pool of α-tubulin N-acetyltransferase 1 (Atat1), promotes the recruitment and processivity of molecular motors along MT tracks. However, the mechanism that controls Atat1 activity remains poorly understood. Here, we show that ATP-citrate lyase (Acly) is enriched in vesicles and provide Acetyl-Coenzyme-A (Acetyl-CoA) to Atat1. In addition, we showed that Acly expression is reduced upon loss of Elongator activity, further connecting Elongator to Atat1 in a pathway regulating α-tubulin acetylation and MT-dependent transport in projection neurons, across species. Remarkably, comparable defects occur in fibroblasts from Familial Dysautonomia (FD) patients bearing an autosomal recessive mutation in the gene coding for the Elongator subunit ELP1. Our data may thus shine light on the pathophysiological mechanisms underlying FD.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Transporte Axonal/fisiologia , ATP Citrato (pro-S)-Liase/genética , Acetilcoenzima A/metabolismo , Acetilação , Acetiltransferases/genética , Animais , Transporte Axonal/genética , Drosophila melanogaster , Disautonomia Familiar/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Larva , Masculino , Camundongos , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
14.
Sci Adv ; 5(12): eaax2705, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31897425

RESUMO

Microtubules are polymerized dimers of α- and ß-tubulin that underlie a broad range of cellular activities. Acetylation of α-tubulin by the acetyltransferase ATAT1 modulates microtubule dynamics and functions in neurons. However, it remains unclear how this enzyme acetylates microtubules over long distances in axons. Here, we show that loss of ATAT1 impairs axonal transport in neurons in vivo, and cell-free motility assays confirm a requirement of α-tubulin acetylation for proper bidirectional vesicular transport. Moreover, we demonstrate that the main cellular pool of ATAT1 is transported at the cytosolic side of neuronal vesicles that are moving along axons. Together, our data suggest that axonal transport of ATAT1-enriched vesicles is the predominant driver of α-tubulin acetylation in axons.


Assuntos
Acetiltransferases/metabolismo , Transporte Axonal/fisiologia , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Acetilação , Acetiltransferases/genética , Animais , Drosophila melanogaster/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Larva/fisiologia , Locomoção , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microtúbulos/genética , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo
16.
J Neurosci ; 26(46): 11915-22, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17108165

RESUMO

Alpha-synuclein (alpha-syn), a protein implicated in Parkinson's disease pathogenesis, is a presynaptic protein suggested to regulate transmitter release. We explored how alpha-syn overexpression in PC12 and chromaffin cells, which exhibit low endogenous alpha-syn levels relative to neurons, affects catecholamine release. Overexpression of wild-type or A30P mutant alpha-syn in PC12 cell lines inhibited evoked catecholamine release without altering calcium threshold or cooperativity of release. Electron micrographs revealed that vesicular pools were not reduced but that, on the contrary, a marked accumulation of morphologically "docked" vesicles was apparent in the alpha-syn-overexpressing lines. We used amperometric recordings from chromaffin cells derived from mice that overexpress A30P or wild-type (WT) alpha-syn, as well as chromaffin cells from control and alpha-syn null mice, to determine whether the filling of vesicles with the transmitter was altered. The quantal size and shape characteristics of amperometric events were identical for all mouse lines, suggesting that overexpression of WT or mutant alpha-syn did not affect vesicular transmitter accumulation or the kinetics of vesicle fusion. The frequency and number of exocytotic events per stimulus, however, was lower for both WT and A30P alpha-syn-overexpressing cells. The alpha-syn-overexpressing cells exhibited reduced depression of evoked release in response to repeated stimuli, consistent with a smaller population of readily releasable vesicles. We conclude that alpha-syn overexpression inhibits a vesicle "priming" step, after secretory vesicle trafficking to "docking" sites but before calcium-dependent vesicle membrane fusion.


Assuntos
Catecolaminas/metabolismo , Células Cromafins/metabolismo , Exocitose/fisiologia , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , alfa-Sinucleína/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cromafins/ultraestrutura , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Masculino , Fusão de Membrana/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/ultraestrutura , Células PC12 , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Ratos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Fatores de Tempo , alfa-Sinucleína/genética
18.
PLoS One ; 9(4): e94612, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24760006

RESUMO

The splice site mutation in the IKBKAP gene coding for IKAP protein leads to the tissue-specific skipping of exon 20, with concomitant reduction in IKAP protein production. This causes the neurodevelopmental, autosomal-recessive genetic disorder - Familial Dysautonomia (FD). The molecular hallmark of FD is the severe reduction of IKAP protein in the nervous system that is believed to be the main reason for the devastating symptoms of this disease. Our recent studies showed that in the brain of two FD patients, genes linked to oligodendrocyte differentiation and/or myelin formation are significantly downregulated, implicating IKAP in the process of myelination. However, due to the scarcity of FD patient tissues, these results awaited further validation in other models. Recently, two FD mouse models that faithfully recapitulate FD were generated, with two types of mutations resulting in severely low levels of IKAP expression. Here we demonstrate that IKAP deficiency in these FD mouse models affects a similar set of genes as in FD patients' brains. In addition, we identified two new IKAP target genes involved in oligodendrocyte cells differentiation and myelination, further underscoring the essential role of IKAP in this process. We also provide proof that IKAP expression is needed cell-autonomously for the regulation of expression of genes involved in myelin formation since knockdown of IKAP in the Oli-neu oligodendrocyte precursor cell line results in similar deficiencies. Further analyses of these two experimental models will compensate for the lack of human postmortem tissues and will advance our understanding of the role of IKAP in myelination and the disease pathology.


Assuntos
Proteínas de Transporte/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Animais , Proteínas de Transporte/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Disautonomia Familiar/genética , Disautonomia Familiar/metabolismo , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mutação , Bainha de Mielina/genética
20.
Int Rev Neurobiol ; 98: 325-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21907094

RESUMO

Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder that prominently affects the basal ganglia, leading to affective, cognitive, behavioral and motor decline. The basis of HD is a CAG repeat expansion to >35 CAG in a gene that codes for a ubiquitous protein known as huntingtin, resulting in an expanded N-terminal polyglutamine tract. The size of the expansion is correlated with disease severity, with increasing CAG accelerating the age of onset. A variety of possibilities have been proposed as to the mechanism by which the mutation causes preferential injury to the basal ganglia. The present chapter provides a basic overview of the genetics and pathology of HD.


Assuntos
Encéfalo/patologia , Predisposição Genética para Doença , Doença de Huntington/genética , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Humanos , Proteína Huntingtina , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA