Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Surg ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920028

RESUMO

OBJECTIVES: Evaluate associations between volatile organic compounds (VOCs) in heat and moisture exchange (HME) filters and the presence of ventilator-associated pneumonia (VAP). SUMMARY BACKGROUND DATA: Clinical diagnostic criteria for VAP have poor inter-observer reliability, and cultures are slow to result. Exhaled breath contains VOCs related to Gram-negative bacterial proliferation, the most identified organisms in VAP. We hypothesized that exhaled VOCs on HME filters can predict nascent VAP in mechanically ventilated ICU patients. METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to analyze 111 heat and moisture exchange (HME) filters from 12 intubated patients who developed VAP. Identities and relative amounts of VOCs were associated with dates of clinical suspicion and culture confirmation of VAP. Matched pairs t-tests were performed to compare VOC abundances in HME filters collected within three days pre- and post-clinical suspicion of VAP (pneumonia days), versus outside of these days (non-pneumonia days). A ROC curve was generated to determine the diagnostic potential of VOCs. RESULTS: Carbon disulfide, associated with the proliferation of certain Gram-negative bacteria, was found in samples collected during pneumonia days for 11 of 12 patients. Carbon disulfide levels were significantly greater (P=0.0163) for filters on pneumonia days. The AUROC for carbon disulfide was 0.649 (95%CI 0.419-0.88). CONCLUSIONS: Carbon disulfide associated with Gram-negative VAP can be identified on HME filters up to three days prior to the initial clinical suspicion, and approximately a week prior to culture confirmation. This suggests VOC sensors may have potential as an adjunctive method for early detection of VAP.

2.
Ecotoxicol Environ Saf ; 278: 116349, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714081

RESUMO

BACKGROUND: Exposures to polyaromatic hydrocarbons (PAHs) contribute to cancer in the fire service. Fire investigators are involved in evaluations of post-fire scenes. In the US, it is estimated that there are up to 9000 fire investigators, compared to approximately 1.1 million total firefighting personnel. This exploratory study contributes initial evidence of PAH exposures sustained by this understudied group using worn silicone passive samplers. OBJECTIVES: Evaluate PAH exposures sustained by fire investigators at post-fire scenes using worn silicone passive samplers. Assess explanatory factors and health risks of PAH exposure at post-fire scenes. METHODS: As part of a cross-sectional study design, silicone wristbands were distributed to 16 North Carolina fire investigators, including eight public, seven private, and one public and private. Wristbands were worn during 46 post-fire scene investigations. Fire investigators completed pre- and post-surveys providing sociodemographic, occupational, and post-fire scene characteristics. Solvent extracts from wristbands were analyzed via gas chromatography-mass spectrometry (GC-MS). Results were used to estimate vapor-phase PAH concentration in the air at post-fire scenes. RESULTS: Fire investigations lasted an average of 148 minutes, standard deviation ± 93 minutes. A significant positive correlation (r=0.455, p<.001) was found between investigation duration and PAH concentrations on wristbands. Significantly greater time-normalized PAH exposures (p=0.039) were observed for investigations of newer post-fire scenes compared to older post-fire scenes. Regulatory airborne PAH exposure limits were exceeded in six investigations, based on exposure to estimated vapor-phase PAH concentrations in the air at post-fire scenes. DISCUSSION: Higher levels of off-gassing and suspended particulates at younger post-fire scenes may explain greater PAH exposure. Weaker correlations are found between wristband PAH concentration and investigation duration at older post-fire scenes, suggesting reduction of off-gassing PAHs over time. Exceedances of regulatory PAH limits indicate a need for protection against vapor-phase contaminants, especially at more recent post-fire scenes.


Assuntos
Bombeiros , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Silicones , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Exposição Ocupacional/análise , Estudos Transversais , North Carolina , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Monitoramento Ambiental/métodos , Poluentes Ocupacionais do Ar/análise , Cromatografia Gasosa-Espectrometria de Massas , Punho
3.
Microchem J ; 1932023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37982106

RESUMO

A portable, field deployable whole-cell biosensor was developed that can withstand the complex matrices of soil and requires minimal to no sample preparation to monitor bioavailable concentrations of the essential micronutrient copper (II). Conventional measurement of micronutrients is often complex, laboratory-based, and not suitable for monitoring their bioavailable concentration. To address this need, we developed a fluorescence based microbial whole-cell biosensing (MWCB) system encoding for a Cu2+-responsive protein capable of generating a signal upon binding to Cu2+. The sensing-reporting protein was designed by performing circular permutation on the green fluorescent protein (GFP) followed by insertion of a Cu2+ binding motif into the structure of GFP. The design included insertion of several binding motifs and creating plasmids that encoded the corresponding sensing proteins. The signal generated by the sensing-reporting protein is directly proportional to the concentration of Cu2+ in the sample. Evaluation of the resulting biosensing systems carrying these plasmids was performed prior to selection of the optimal fluorescence emitting Cu2+-binding protein. The resulting optimized biosensing system was encapsulated in polyacrylate-alginate beads and embedded in soil for detection of the analyte. Once exposed to the soil, the beads were interrogated to measure the fluorescence signal emitted by the sensing-reporting protein using a portable imaging device. The biosensor was optimized for detection of Cu2+ in terms of selectivity, sensitivity, matrix effects, detection limits, and reproducibility in both liquid and soil matrices. The limit of detection (LoD) of the optimized encapsulated biosensor was calculated as 0.27 mg/L and 1.26 mg/kg of Cu2+ for Cu2+ in solution and soil, respectively. Validation of the portable imaging tools as a potential biosensing device in the field was performed.

4.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569520

RESUMO

This research introduces a novel pipeline that couples machine learning (ML), and molecular docking for accelerating the process of small peptide ligand screening through the prediction of peptide-protein docking. Eight ML algorithms were analyzed for their potential. Notably, Light Gradient Boosting Machine (LightGBM), despite having comparable F1-score and accuracy to its counterparts, showcased superior computational efficiency. LightGBM was used to classify peptide-protein docking performance of the entire tetrapeptide library of 160,000 peptide ligands against four viral envelope proteins. The library was classified into two groups, 'better performers' and 'worse performers'. By training the LightGBM algorithm on just 1% of the tetrapeptide library, we successfully classified the remaining 99%with an accuracy range of 0.81-0.85 and an F1-score between 0.58-0.67. Three different molecular docking software were used to prove that the process is not software dependent. With an adjustable probability threshold (from 0.5 to 0.95), the process could be accelerated by a factor of at least 10-fold and still get 90-95% concurrence with the method without ML. This study validates the efficiency of machine learning coupled to molecular docking in rapidly identifying top peptides without relying on high-performance computing power, making it an effective tool for screening potential bioactive compounds.


Assuntos
Peptídeos , Proteínas , Ligantes , Simulação de Acoplamento Molecular , Proteínas/química , Peptídeos/metabolismo , Algoritmos , Aprendizado de Máquina , Ligação Proteica
5.
Anal Chem ; 94(5): 2485-2492, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34968033

RESUMO

In recent years, the number of product recalls and contamination incidents involving pathogenic bacteria has significantly increased, and the ensuing infections continue to be an ongoing problem for public health and agriculture. Due to the widespread impact of these pathogens, there is a critical need for rapid, on-site assays that can provide rapid results. In this work, we demonstrate the development of a rapid and simple test based on the combination of reverse transcription with recombinase polymerase amplification followed by lateral flow strip detection of viable Escherichia coli O157:H7 cells by detecting the RNA of the pathogen. The optimized method can be performed for approximately 2 h with a detection limit of 10 CFU/mL of E. coli O157:H7 in buffer, spinach, and ground beef samples. Our assay is sensitive, detecting only E. coli O157:H7 and not nonpathogenic E. coli or other similar pathogens. This strategy was able to distinguish viable from nonviable bacteria and more significantly was able to detect viable but nonculturable bacteria, which is a major issue when using culture-based methods for monitoring pathogenic bacteria. An important advantage of this test is that it can provide timely identification and removal of contaminated consumables prior to distribution without an extensive sample preparation.


Assuntos
Escherichia coli O157 , Animais , Bovinos , Escherichia coli O157/genética , Contaminação de Alimentos/análise , Microbiologia de Alimentos , RNA , Spinacia oleracea
6.
Anal Chem ; 94(33): 11619-11626, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943181

RESUMO

There is an unmet need for a point-of-care test that is accurate, affordable, and simple to diagnose bacterial vaginosis, the most common cause of vaginal symptoms among women. Bacterial vaginosis leaves patients with undesirable vaginal discharge, malodor, and discomfort. Currently, the diagnosis of bacterial vaginosis is inaccurate and complex, leading to high rates of misdiagnosis. Inaccurate diagnoses are unsafe as bacterial vaginosis increases the risks of acquiring sexually transmitted infections as well as the likelihood of miscarriages. To date, the most commonly identified bacteria associated with bacterial vaginosis is Gardnerella vaginalis. We developed a method for the expression, purification, and detection of vaginolysin, the most well-characterized virulence factor of G. vaginalis. Elevated levels of G. vaginalis have been shown to lead to a toxic vaginal environment, facilitating bacterial vaginosis. We have developed an enzyme-linked immunosorbent assay for the detection of vaginolysin, which was translated to a lateral flow assay for use in a rapid, straightforward, cost-effective paper-based diagnostic test for vaginolysin that does not require the use of instrumentation. In conjunction, we have employed a commercially available smartphone microscopy kit to visualize clue cells without the need for equipment or electricity. The combination of these methodologies allows for an accurate and easy approach to diagnose bacterial vaginosis with minimal resources for use in any setting.


Assuntos
Vaginose Bacteriana , Feminino , Gardnerella vaginalis/metabolismo , Humanos , Testes Imediatos , Smartphone , Vagina/microbiologia , Vaginose Bacteriana/diagnóstico , Vaginose Bacteriana/microbiologia
7.
Mol Pharm ; 19(7): 2254-2267, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35506882

RESUMO

The United States is in the midst of an opioid epidemic that is linked to a number of serious health issues, including an increase in cerebrovascular events, namely, stroke. Chronic prescription opioid use exacerbates the risk and severity of ischemic stroke, contributing to stroke as the fifth overall cause of death in the United States and costing the US health care system over $30 billion annually. Pathologically, opioids challenge the integrity of the blood-brain barrier (BBB), resulting in a dysregulation of tight junction (TJ) proteins that are crucial in maintaining barrier homeostasis. Despite this, treatment options for ischemic stroke are limited, and there are no pharmacological options to attenuate TJ damage, including in incidents that are linked to opioid use. Herein, we have generated carrier-free, pure "nanodrugs" or nanoparticles of naloxone and naltrexone with enhanced therapeutic properties compared to the original (parent) drugs. The generated nanoformulations of both opioid antagonists exhibited successful attenuation of morphine- or oxycodone-induced alterations of TJ protein expression and reduced oxidative stress to a greater extent than the parent drugs (non-nano). As a proof of concept, we then proceeded to evaluate the therapeutic effectiveness of the generated nanodrugs in an ischemic stroke model of mice exposed to morphine or oxycodone. Our results demonstrate that the opioid antagonist nanoformulations reduced stroke severity in mice. Overall, this research implements advances in nanotechnology-based repurposing of FDA-approved therapeutics, and the obtained results also suggest underlying pharmacological mechanisms of opioid antagonists, further supporting these opioid antagonists and their respective nanoformulations as potential therapeutic agents for ischemic stroke.


Assuntos
AVC Isquêmico , Nanopartículas , Transtornos Relacionados ao Uso de Opioides , Acidente Vascular Cerebral , Analgésicos Opioides/uso terapêutico , Animais , AVC Isquêmico/tratamento farmacológico , Camundongos , Morfina/uso terapêutico , Naloxona , Naltrexona , Nanopartículas/uso terapêutico , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/uso terapêutico , Oxicodona , Acidente Vascular Cerebral/tratamento farmacológico , Proteínas de Junções Íntimas
8.
Trends Food Sci Technol ; 115: 409-421, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34267423

RESUMO

With the rise in outbreaks of pathogenic bacteria in both food and water resulting in an increased instance of infection, there is a growing public health problem in both developed and developing countries. In this increasing threat the most effective method for control and prevention is rapid and cost-effective detection. Research has shifted in recent years towards the development of rapid and on-site assays for the detection of these kinds of bacteria. However, there are still some limitations in the implementation of these assays in the field. This article discusses the current on-site detection methods. Current scope of advancements and limitations in the development or use of these on-site technologies for food and waterborne bacterial detection is evaluated in this study. With the continued development of these technologies, on-site detection will continue to impact many areas of public health. As these methods continue to improve and diversify further, on-site detection could become more widely implemented in food and water analysis.

9.
Nanomedicine ; 31: 102305, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32992017

RESUMO

A mediator-free, non-enzymatic electrochemical biosensor was constructed by covalent immobilization of a genetically engineered periplasmic glutamate binding protein onto gold nanoparticle-modified, screen-printed carbon electrodes (GluBP/AuNP/SPCE) for the purpose of direct measurement of glutamate levels. Glutamate serves as the predominant excitatory neurotransmitter in the central nervous system. As high levels of glutamate are an indicator of many neurologic disorders, there is a need for advancements in glutamate detection technologies. The biosensor was evaluated for glutamate detection by cyclic voltammetry. Binding of glutamate to the immobilized glutamate binding protein results in a conformational change of the latter that alters the microenvironment on the surface of the sensor, which is manifested as a change in signal. Dose-response plots correlating the electrochemical signal to glutamate concentration revealed a detection limit of 0.15 µM with a linear range of 0.1-0.8 µM. Selectivity studies confirmed a strong preferential response of the biosensor for glutamate against common interfering compounds.


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo
10.
Anal Chem ; 92(11): 7393-7398, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32410446

RESUMO

Although bioluminescent molecular beacons designed around resonance quenchers have shown higher signal-to-noise ratios and increased sensitivity compared with fluorescent beacon systems, bioluminescence quenching is still comparatively inefficient. A more elegant solution to inefficient quenching can be realized by designing a competitive inhibitor that is structurally very similar to the native substrate, resulting in essentially complete substrate exclusion. In this work, we designed a conjugated anti-interferon-γ (IFN-γ) molecular aptamer beacon (MAB) attached to a bioluminescent protein, Gaussia luciferase (GLuc), and an inhibitor molecule with a similar structure to the native substrate coelenterazine. To prove that a MAB can be more sensitive and have a better signal-to-noise ratio, a bioluminescence-based assay was developed against IFN-γ and provided an optimized, physiologically relevant detection limit of 1.0 nM. We believe that this inhibitor approach may provide a simple alternative strategy to standard resonance quenching in the development of high-performance molecular beacon-based biosensing systems.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Inibidores Enzimáticos/química , Imidazóis/química , Luciferases/química , Proteínas Luminescentes/química , Pirazinas/química , Animais , Aptâmeros de Nucleotídeos/síntese química , Copépodes/enzimologia , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Luciferases/antagonistas & inibidores , Luciferases/metabolismo , Medições Luminescentes , Proteínas Luminescentes/antagonistas & inibidores , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Estrutura Molecular , Pirazinas/farmacologia , Razão Sinal-Ruído
11.
Ecotoxicol Environ Saf ; 205: 111100, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911453

RESUMO

Compared to the general population, firefighters are known to sustain greater levels of exposure to hazardous compounds, despite their personal protective equipment, also known as turnout gear. Among the most significant toxins that firefighters are chronically exposed to are polycyclic aromatic hydrocarbons (PAHs). Additionally, firefighters have also been noted to exhibit an increased incidence of certain types of cancer. Considering a probable link between exposure to PAHs and increased rates of cancer in the fire service, we aim to document ambient chemical concentrations in the firefighter work environment. Our strategy involves the use of silicone-based wristbands that have the capacity to passively sorb PAHs. To determine if wristbands can serve as an effective chemical monitoring device for the fire service, silicone wristbands were pilot-tested as personal sampling devices for work environment risk monitoring in active-duty firefighters. Recovered wristbands underwent multiple extraction steps, followed by GC-MS analysis to demonstrate their efficacy in monitoring PAHs in the firefighter environment. Initial findings from all wristband samples taken from firefighters showed multiple exposures to various PAHs of concern for the health of the firefighters when in a fire environment. In addition to PAH monitoring, we examined known and potential sources of PAH contamination in their work environment. To that end, profiles of elevated PAH concentrations were documented at various fire stations throughout South Florida, for individual firefighters both during station duties and active fire response.


Assuntos
Poluentes Ocupacionais do Ar/análise , Bombeiros , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Carcinógenos/análise , Monitoramento Ambiental , Florida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias , Exposição Ocupacional/estatística & dados numéricos , Silicones/análise
12.
Int J Mol Sci ; 21(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708609

RESUMO

Urinary tract infection (UTI) is one of the most common infections, accounting for a substantial portion of outpatient hospital and clinic visits. Standard diagnosis of UTI by culture and sensitivity can take at least 48 h, and improper diagnosis can lead to an increase in antibiotic resistance following therapy. To address these shortcomings, rapid bioluminescence assays were developed and evaluated for the detection of UTI using intact, viable cells of Photobacterium mandapamensis USTCMS 1132 or previously lyophilized cells of Photobacterium leiognathi ATCC 33981™. Two platform technologies-tube bioluminescence extinction technology urine (TuBETUr) and cellphone-based UTI bioluminescence extinction technology (CUBET)-were developed and standardized using artificial urine to detect four commonly isolated UTI pathogens-namely, Escherichia coli, Proteus mirabilis, Staphylococcus aureus, and Candida albicans. Besides detection, these assays could also provide information regarding pathogen concentration/level, helping guide treatment decisions. These technologies were able to detect microbes associated with UTI at less than 105 CFU/mL, which is usually the lower cut-off limit for a positive UTI diagnosis. Among the 29 positive UTI samples yielding 105-106 CFU/mL pathogen concentrations, a total of 29 urine specimens were correctly detected by TuBETUr as UTI-positive based on an 1119 s detection window. Similarly, the rapid CUBET method was able to discriminate UTIs from normal samples with high confidence (p ≤ 0.0001), using single-pot conditions and cell phone-based monitoring. These technologies could potentially address the need for point-of-care UTI detection while reducing the possibility of antibiotic resistance associated with misdiagnosed cases of urinary tract infections, especially in low-resource environments.


Assuntos
Infecções Bacterianas/urina , Técnicas Biossensoriais/métodos , Candidíase/urina , Medições Luminescentes/métodos , Photobacterium , Infecções Urinárias/urina , Infecções Bacterianas/microbiologia , Técnicas Biossensoriais/economia , Candida albicans/isolamento & purificação , Candidíase/microbiologia , Escherichia coli/isolamento & purificação , Humanos , Limite de Detecção , Luminescência , Medições Luminescentes/economia , Photobacterium/citologia , Photobacterium/isolamento & purificação , Proteus mirabilis/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Fatores de Tempo , Infecções Urinárias/microbiologia
13.
Small ; 15(35): e1902248, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31313884

RESUMO

The ability to monitor types, concentrations, and activities of different biomolecules is essential to obtain information about the molecular processes within cells. Successful monitoring requires a sensitive and selective tool that can respond to these molecular changes. Molecular aptamer beacon (MAB) is a molecular imaging and detection tool that enables visualization of small or large molecules by combining the selectivity and sensitivity of molecular beacon and aptamer technologies. MAB design leverages structure switching and specific recognition to yield an optical on/off switch in the presence of the target. Various donor-quencher pairs such as fluorescent dyes, quantum dots, carbon-based materials, and metallic nanoparticles have been employed in the design of MABs. In this work, the diverse biomedical applications of MAB technology are focused on. Different conjugation strategies for the energy donor-acceptor pairs are addressed, and the overall sensitivities of each detection system are discussed. The future potential of this technology in the fields of biomedical research and diagnostics is also highlighted.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Corantes Fluorescentes/química , Imagem Molecular , Transdução de Sinais , Espectrometria de Fluorescência/métodos
14.
Mol Pharm ; 16(6): 2376-2384, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30951315

RESUMO

Skeletal muscle is ideally suited and highly desirable as a target for therapeutic gene delivery because of its abundance, high vascularization, and high levels of protein expression. However, efficient gene delivery to skeletal muscle remains a current challenge. Besides the major obstacle of cell-specific targeting, efficient intracellular trafficking, or the cytosolic transport of DNA to the nucleus, must be demonstrated. To overcome the challenge of cell-specific targeting, herein we develop a generation 5-polyamidoamine dendrimer (G5-PAMAM) functionalized with a skeletal muscle-targeted peptide, ASSLNIA (G5-SMTP). Specifically, to demonstrate the feasibility of our approach, we prepared a complex of our G5-SMTP dendrimer with a plasmid encoding firefly luciferase and investigated its delivery to skeletal muscle cells. Luciferase assays indicated a threefold increase in transfection efficiency of C2C12 murine skeletal muscle cells using G5-SMTP when compared with nontargeting nanocarriers using unmodified G5. To further improve the transfection yield, we employed a cationic dynein light chain 8 protein (DLC8)-binding peptide (DBP) containing an internal sequence known to bind to the DLC8 of the dynein motor protein complex. Complexation of DBP with our targeting nanocarrier, that is, G5-SMTP, and our luciferase plasmid cargo resulted in a functional nanocarrier that showed an additional sixfold increase in transfection efficiency compared with G5-SMTP transfection alone. To our knowledge, this is the first successful use of two different functional nanocarrier components that enable targeted skeletal muscle cell recognition and increased efficiency of intracellular trafficking to synergistically enhance gene delivery to skeletal muscle cells. This strategy of targeting and trafficking can also be universally applied to any cell/tissue type for which a recognition domain exists.


Assuntos
Dendrímeros/química , Dineínas/química , Músculo Esquelético/metabolismo , Plasmídeos/administração & dosagem , Animais , Linhagem Celular , Citoplasma/metabolismo , Dineínas do Citoplasma/metabolismo , Camundongos , Plasmídeos/genética
15.
Analyst ; 144(10): 3250-3259, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31049499

RESUMO

The trend for improved more precise diagnostics and management of disease heavily relies on the measurement of panels of biomarkers in physiological samples of patients. Ideally, the ultimate goal would be to detect as many clinically relevant biomarkers as possible in a single drop of blood, achieving quick, sensitive, reproducible, and affordable detection in small volume physiological samples. Bioluminescent (BL) proteins provide many of the desired characteristics required for such labels, including detection at extremely low concentrations, no interference from physiological fluids leading to excellent detection limits, and compatibility with many miniaturized systems. However, to date the use of BL proteins has been restricted by their limited multiplexing capabilities. BL proteins typically exhibit a single emission profile and decay kinetics making the simultaneous detection of multiple analytes difficult. Recent progresses in this area include the use of two different engineered luminescent proteins to achieve resolved signals via one-dimensional time resolution. This approach, however, to date only lead to a dual analyte detection. Herein, we have demonstrated that using a two-dimensional approach that combines both temporal and spatial resolution, we can expand the multiplexing capabilities of bioluminescent proteins. To that end, the photoprotein aequorin (AEQ) has been employed for the simultaneous detection of three separate analytes in a single well, differentiated through the use of three discrete time/wavelength windows. Through a combination of site-specific mutations and synthetic coelenterazines "semi-synthetic" AEQ variants have been developed with altered emission profiles and decay kinetics. In this study, two AEQ mutant proteins were genetically conjugated to three pro-inflammatory cytokines (tumor necrosis factor alpha, interleukins 6 and 8) resulting in AEQ-labeled cytokines. These fusion proteins were combined with synthetic coelenterazines resulting in proteins with differing emission maxima and half-lives to allow for the simultaneous detection of all three cytokines in a single sample. The validity of the assay was demonstrated in serum by employing human physiological samples and comparing our results with commercially available individual tests for each of the three cytokines.


Assuntos
Equorina/química , Interleucina-6/sangue , Interleucina-9/sangue , Fator de Necrose Tumoral alfa/sangue , Equorina/genética , Animais , Cabras , Humanos , Hidrozoários/química , Imidazóis/química , Imunoensaio/métodos , Imunoglobulina G/imunologia , Interleucina-6/imunologia , Interleucina-9/imunologia , Limite de Detecção , Luminescência , Medições Luminescentes/métodos , Camundongos , Mutação , Pirazinas/química , Reprodutibilidade dos Testes , Fator de Necrose Tumoral alfa/imunologia
16.
Bioconjug Chem ; 28(6): 1749-1757, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28514139

RESUMO

Bioorthogonal conjugation eliminates the shortcomings of classical conjugation methods. The conjugation of antibodies to reporter proteins, such as bioluminescent protein, can be controlled with orthogonal conjugation methods. Here we report a bioluminescent immunoassay for the sensitive detection of interferon-γ (IFN-γ) that utilizes orthogonal conjugation of bioluminescent protein, Gaussia luciferase to anti-IFN-γ antibody. The IFN-γ is produced by the immune system and the detection of the IFN-γ is pivotal for the detection of persistent viral and bacterial infections. A bioorthogonal conjugation approach is used to conjugate an anti-IFN-γ antibody with a GLuc mutant containing the N-terminal tyrosine using formylbenzene diazonium hexafluorophosphate reagent (FBDP) in hydrophilic mild pH environment yielding high conjugation efficiency (60%). This reagent is shown to be specific for tyrosine (Tyr) residues. Therefore, conjugation through Tyr was orthogonal and not detrimental to the bioluminescence activity of GLuc. The immunoassay described in this paper is a sandwich type assay and involves a capture and a detection antibody. The assay was validated for its robustness, precision, accuracy, limit of detection, and recovery.


Assuntos
Imunoensaio/métodos , Infecções/diagnóstico , Interferon gama/análise , Animais , Anticorpos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunoensaio/normas , Interferon gama/imunologia , Limite de Detecção , Luciferases , Substâncias Luminescentes , Sensibilidade e Especificidade , Tirosina
17.
Protein Expr Purif ; 132: 68-74, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28108349

RESUMO

Marine luciferases are regularly employed as useful reporter molecules across a range of various applications. However, attempts to transition expression from their native eukaryotic environment into a more economical prokaryotic, i.e. bacterial, expression system often presents several challenges. Specifically, bacterial protein expression inherently lacks chaperone proteins to aid in the folding process, while Escherichia coli presents a reducing cytoplasmic environment in. These conditions contribute to the inhibition of proper folding of cysteine-rich proteins, leading to incorrect tertiary structure and ultimately inactive and potentially insoluble protein. Vargula luciferase (Vluc) is a cysteine-rich marine luciferase that exhibits glow-type bioluminescence through a reaction between its unique native substrate and molecular oxygen. Because most other commonly used bioluminescent proteins exhibit flash-type emission kinetics, this emission characteristic of Vluc is desirable for high-throughput applications where stability of emission is required for the duration of data collection. A truncated form of Vluc that retains considerable bioluminescence activity (55%) compared to the native full-length protein has been reported in the literature. However, expression and purification of this luciferase from bacterial systems has proven difficult. Herein, we demonstrate the expression and purification of a truncated form of Vluc from E. coli. This truncated Vluc (tVluc) was subsequently characterized in terms of both its biophysical and bioluminescence properties.


Assuntos
Proteínas de Artrópodes , Crustáceos/genética , Luciferases , Animais , Proteínas de Artrópodes/biossíntese , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/isolamento & purificação , Crustáceos/enzimologia , Luciferases/biossíntese , Luciferases/química , Luciferases/genética , Luciferases/isolamento & purificação , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade
18.
Analyst ; 142(5): 815-823, 2017 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-28194453

RESUMO

Viral detection presents a host of challenges for even the most sensitive analytical techniques, and the complexity of common detection platforms typically preclude portability. With these considerations in mind, we designed a paper microzone plate-based virus detection system for the detection of viral genetic material that can be performed with simple instruments. The sensing system can detect viral cDNA reverse-transcribed from total RNA extraction by utilizing a biotinylated capture probe and an Alexa Fluor® 647-labeled reporter probe. The biotinylated capture probe was linked to the paper surface via NeutrAvidin® that was physically adsorbed on the paper. After addition of reverse-transcribed sample and reporter probe in sequence, the reverse-transcribed target captured the reporter probe and tethered it to the capture probe in a bridged format. Fluorescence intensity was imaged using a Western blot imaging system, and higher target concentration was visible by the increased emission intensity from Alexa Fluor® 647. By utilizing paper, this detection setup could also serve as a sample concentration method via evaporation, which could remarkably lower the detection limit if needed. This detection platform used Epstein-Barr virus (EBV) RNA as a proof-of-concept by sensing cDNA resulting from reverse transcription and can be further expanded as a general method for other pathogens. EBV is a well-known human tumor virus, which has also recently been linked to the development of cervical cancer. The assay was accomplished within two hours including the room-temperature RNA extraction and reverse transcription steps. Also, this paper microzone plate-based platform can potentially be applicable for the development of point-of-care (POC) detection kits or devices due to its robust design, convenient interface, and easy portability. The experiment could be stopped after each step, and continued at a later time. The shelf-life of the modified paper plate setup was at least 3 months without a discernible change in signal, and the result from day 1 could be read at 3 months - both of which are important criteria for POC analytical testing tools, especially in resource-poor settings. All of the required assay steps could potentially be performed without any significant equipment using inexpensive paper microzone plates, which will be ideal for further development of POC testing devices. Although, this platform is not at the stage where it can be directly used in a point-of-care setting, it does have fundamental characteristics such as a stable platform, a simple detection method, and relatively common reagents that align closely with a POC system.


Assuntos
Papel , RNA Viral/isolamento & purificação , Linfócitos B , Carbocianinas , Linhagem Celular , Herpesvirus Humano 4/isolamento & purificação , Humanos , Limite de Detecção , RNA Viral/sangue , Transcrição Reversa
19.
Anal Biochem ; 498: 1-7, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26772160

RESUMO

Here we describe the design and construction of an imaging construct with high bioluminescent resonance energy transfer (BRET) efficiency that is composed of multiple quantum dots (QDs; λem = 655 nm) self-assembled onto a bioluminescent protein, Renilla luciferase (Rluc). This is facilitated by the streptavidin-biotin interaction, allowing the facile formation of a hybrid-imaging construct (HIC) comprising up to six QDs (acceptor) grafted onto a light-emitting Rluc (donor) core. The resulting assembly of multiple acceptors surrounding a donor permits this construct to exhibit high resonance energy transfer efficiency (∼64.8%). The HIC was characterized using fluorescence excitation anisotropy measurements and high-resolution transmission electron microscopy. To demonstrate the application of our construct, a generation-5 (G5) polyamidoamine dendrimer (PAMAM) nanocarrier was loaded with our HIC for in vitro and in vivo imaging. We envision that this design of multiple acceptors and bioluminescent donor will lead to the development of new BRET-based systems useful in sensing, imaging, and other bioanalytical applications.


Assuntos
Dendrímeros/química , Desenho de Fármacos , Transferência de Energia , Luciferases de Renilla/química , Medições Luminescentes , Nanoestruturas/química , Pontos Quânticos , Dendrímeros/síntese química , Luciferases de Renilla/metabolismo
20.
Anal Bioanal Chem ; 406(23): 5639-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25084737

RESUMO

Bioluminescent labels can be especially useful for in vivo and live animal studies due to the negligible bioluminescence background in cells and most animals, and the non-toxicity of bioluminescent reporter systems. Significant thermal stability of bioluminescent labels is essential, however, due to the longitudinal nature and physiological temperature conditions of many bioluminescent-based studies. To improve the thermostability of the bioluminescent protein aequorin, we employed random and rational mutagenesis strategies to create two thermostable double mutants, S32T/E156V and M36I/E146K, and a particularly thermostable quadruple mutant, S32T/E156V/Q168R/L170I. The double aequorin mutants, S32T/E156V and M36I/E146K, retained 4 and 2.75 times more of their initial bioluminescence activity than wild-type aequorin during thermostability studies at 37 °C. Moreover, the quadruple aequorin mutant, S32T/E156V/Q168R/L170I, exhibited more thermostability at a variety of temperatures than either double mutant alone, producing the most thermostable aequorin mutant identified thus far.


Assuntos
Equorina/química , Equorina/genética , Mutação de Sentido Incorreto , Equorina/metabolismo , Substituição de Aminoácidos , Temperatura Alta , Cinética , Medições Luminescentes , Mutagênese Sítio-Dirigida , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA