Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(30): e202304720, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37166367

RESUMO

Advancing the development of perfecting the use of polar organometallics in bio-inspired solvents, we report on the effective generation in batch of organosodium compounds, by the oxidative addition of a C-Cl bond to sodium, a halogen/sodium exchange, or by direct sodiation, when using sodium bricks or neopentylsodium in hexane as sodium sources. C(sp3 )-, C(sp2 )-, and C(sp)-hybridized alkyl and (hetero)aryl sodiated species have been chemoselectively trapped (in competition with protonolysis), with a variety of electrophiles when working "on water", or in biodegradable choline chloride/urea or L-proline/glycerol eutectic mixtures, under hydrous conditions and at room temperature. Additional benefits include a very short reaction time (20 s), a wide substrate scope, and good to excellent yields (up to 98 %) of the desired adducts. The practicality of the proposed protocol was demonstrated by setting up a sodium-mediated multigram-scale synthesis of the anticholinergic drug orphenadrine.

2.
Org Biomol Chem ; 19(12): 2558-2577, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33471017

RESUMO

Owing to a growing awareness towards environmental impact, the search for "greener", safer, and cost-effective solvents able to replace petroleum-derived solvents has never been greater today. In this context, the use of environmentally responsible solvents like water and the so-called deep eutectic solvents (DESs), constructed from bio-based compounds, has recently experienced important growth in several fields of sciences. This short review highlights the key features of the chemistry of water and (hydrated) DESs when applied to metal- and biocatalyzed transformations as well as to the synthesis of active pharmaceutical ingredients (APIs) and other biologically relevant compounds by providing, through discussion of all relevant literature over the past five years, a comparison of the outcomes of the reactions when carried out in one or the other solvent.


Assuntos
Enzimas/metabolismo , Metais/química , Compostos Orgânicos/síntese química , Compostos Orgânicos/metabolismo , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/metabolismo , Água/química , Catálise , Enzimas/química , Estrutura Molecular , Compostos Orgânicos/química , Preparações Farmacêuticas/química , Solventes/química
3.
Angew Chem Int Ed Engl ; 60(19): 10632-10636, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605516

RESUMO

Pd-catalyzed Negishi cross-coupling reactions between organozinc compounds and (hetero)aryl bromides have been reported when using bulk water as the reaction medium in the presence of NaCl or the biodegradable choline chloride/urea eutectic mixture. Both C(sp3 )-C(sp2 ) and C(sp2 )-C(sp2 ) couplings have been found to proceed smoothly, with high chemoselectivity, under mild conditions (room temperature or 60 °C) in air, and in competition with protonolysis. Additional benefits include very short reaction times (20 s), good to excellent yields (up to 98 %), wide substrate scope, and the tolerance of a variety of functional groups. The proposed novel protocol is scalable, and the practicability of the method is further highlighted by an easy recycling of both the catalyst and the eutectic mixture or water.

4.
Angew Chem Int Ed Engl ; 58(6): 1799-1802, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30516878

RESUMO

Direct palladium-catalysed cross-couplings between organolithium reagents and (hetero)aryl halides (Br, Cl) proceed fast, cleanly and selectively at room temperature in air, with water as the only reaction medium and in the presence of NaCl as a cheap additive. Under optimised reaction conditions, a water-accelerated catalysis is responsible for furnishing C(sp3 )-C(sp2 ), C(sp2 )-C(sp2 ), and C(sp)-C(sp2 ) cross-coupled products, in competition with protonolysis, within a reaction time of 20 s, in yields of up to 99 %, and in the absence of undesired dehalogenated/homocoupling side products even when challenging secondary organolithiums serve as the starting material. It is worth noting that the proposed protocol is scalable and the catalyst and water can easily and successfully be recycled up to 10 times, with an E-factor as low as 7.35.

5.
Angew Chem Int Ed Engl ; 56(34): 10200-10203, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28695616

RESUMO

In contrast to classic methods carried out under inert atmospheres with dry volatile organic solvents and often low temperatures, the addition of highly polar organometallic compounds to non-activated imines and nitriles proceeds quickly, efficiently, and chemoselectively with a broad range of substrates at room temperature and under air with water as the only reaction medium. Secondary amines and tertiary carbinamines are furnished in yields of up to and over 99 %. The significant solvent D/H isotope effect observed for the on-water nucleophilic additions of organolithium compounds to imines suggests that the on-water catalysis arises from proton transfer across the organic-water interface. The strong intermolecular hydrogen bonds between water molecules may play a key role in disfavoring protonolysis, which occurs extensively in other protic media such as methanol. This work lays the foundation for reshaping many fundamental s-block metal-mediated organic transformations in water.

6.
Chem Commun (Camb) ; 57(81): 10564-10567, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34557887

RESUMO

A simple cobalt complex, such as Co(phen)Cl2, turned out to be a highly efficient and cheap precatalyst for a host of cross-coupling reactions involving aromatic and aliphatic organoaluminum reagents with aryl, heteroaryl and alkyl bromides. New C(sp2)-C(sp2) and C(sp2)-C(sp3) bonds were formed in good to excellent yields and with high chemoselectivity, under mild reaction conditions.

7.
Chem Commun (Camb) ; 55(54): 7741-7744, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31168546

RESUMO

Directed ortho metalation (DoM) or nucleophilic acyl substitution (SNAc) can be efficiently programmed on the same aromatic carboxylic acid amide, in a choline chloride-based eutectic mixture, by simply switching the nature of the organolithium reagent. Telescoped, one-pot ortho-lithiation/Suzuki-Miyaura cross-couplings have also been demonstrated for the first time in Deep Eutectic Solvents.

8.
ChemSusChem ; 11(19): 3495-3501, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30074303

RESUMO

Pd-catalyzed Suzuki-Miyaura cross-coupling between (hetero)aryl halides (Cl, Br, I) and versatile, moisture-stable mono- and bifunctional potassium aryltrifluoroborates proceeded efficiently and chemoselectively in air and under generally mild conditions; a catalyst loading as low as 1 mol % combined with Na2 CO3 as a base in choline chloride/glycerol (1:2) deep eutectic solvent (DES) was used as a sustainable and environmentally responsible medium. The catalyst, base, and DES were easily and successfully recycled up to six times with an E-factor as low as 8.74. Valuable biaryls and terphenyl derivatives were furnished in yields of up to 98 %; over 50 reactions were compared and discussed. The methodology was applied for the synthesis of the nonsteroidal anti-inflammatory drugs Felbinac and Diflunisal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA