Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Immunol ; 199(11): 3808-3820, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070670

RESUMO

Type III IFNs are important mediators of antiviral immunity. IFN-λ4 is a unique type III IFN because it is produced only in individuals who carry a dG allele of a genetic variant rs368234815-dG/TT. Counterintuitively, those individuals who can produce IFN-λ4, an antiviral cytokine, are also less likely to clear hepatitis C virus infection. In this study, we searched for unique functional properties of IFN-λ4 that might explain its negative effect on hepatitis C virus clearance. We used fresh primary human hepatocytes (PHHs) treated with recombinant type III IFNs or infected with Sendai virus to model acute viral infection and subsequently validated our findings in HepG2 cell line models. Endogenous IFN-λ4 protein was detectable only in Sendai virus-infected PHHs from individuals with the dG allele, where it was poorly secreted but highly functional, even at concentrations < 50 pg/ml. IFN-λ4 acted faster than other type III IFNs in inducing antiviral genes, as well as negative regulators of the IFN response, such as USP18 and SOCS1 Transient treatment of PHHs with IFN-λ4, but not IFN-λ3, caused a strong and sustained induction of SOCS1 and refractoriness to further stimulation with IFN-λ3. Our results suggest unique functional properties of IFN-λ4 that can be important in viral clearance and other clinical conditions.


Assuntos
Alelos , Hepatócitos/imunologia , Interferons/genética , Interleucinas/genética , Infecções por Respirovirus/imunologia , Vírus Sendai/imunologia , Adolescente , Adulto , Idoso , Endopeptidases/genética , Feminino , Células Hep G2 , Hepacivirus/imunologia , Hepatite C/genética , Hepatite C/imunologia , Hepatócitos/virologia , Humanos , Imunidade , Interferons/metabolismo , Interleucinas/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteína 1 Supressora da Sinalização de Citocina/genética , Ubiquitina Tiolesterase , Regulação para Cima , Carga Viral , Adulto Jovem
2.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539452

RESUMO

Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious viruslike particles, and the viral RNA is dispensable in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle production when Gag is expressed at levels similar to those in cells containing one provirus. However, such enhancement is diminished when Gag is overexpressed, suggesting that the effects of viral RNA can be replaced by increased Gag concentration in cells. We also showed that the specific interactions between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA-Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged into each nascent virion. These studies shed light on the mechanism by which HIV-1 achieves efficient genome packaging during virus assembly.IMPORTANCE Retrovirus assembly is a well-choreographed event, during which many viral and cellular components come together to generate infectious virions. The viral RNA genome carries the genetic information to new host cells, providing instructions to generate new virions, and therefore is essential for virion infectivity. In this report, we show that the specific interaction of the viral RNA genome with the structural protein Gag facilitates virion assembly and particle production. These findings resolve the conundrum that HIV-1 RNA is selectively packaged into virions with high efficiency despite being dispensable for virion assembly. Understanding the mechanism used by HIV-1 to ensure genome packaging provides significant insights into viral assembly and replication.


Assuntos
HIV-1/fisiologia , RNA Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Humanos
3.
PLoS Pathog ; 9(3): e1003249, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555259

RESUMO

How retroviruses regulate the amount of RNA genome packaged into each virion has remained a long-standing question. Our previous study showed that most HIV-1 particles contain two copies of viral RNA, indicating that the number of genomes packaged is tightly regulated. In this report, we examine the mechanism that controls the number of RNA genomes encapsidated into HIV-1 particles. We hypothesize that HIV-1 regulates genome packaging by either the mass or copy number of the viral RNA. These two distinct mechanisms predict different outcomes when the genome size deviates significantly from that of wild type. Regulation by RNA mass would result in multiple copies of a small genome or one copy of a large genome being packaged, whereas regulation by copy number would result in two copies of a genome being packaged independent of size. To distinguish between these two hypotheses, we examined the packaging of viral RNA that was larger (≈17 kb) or smaller (≈3 kb) than that of wild-type HIV-1 (≈9 kb) and found that most particles packaged two copies of the viral genome regardless of whether they were 17 kb or 3 kb. Therefore, HIV-1 regulates RNA genome encapsidation not by the mass of RNA but by packaging two copies of RNA. To further explore the mechanism that governs this regulation, we examined the packaging of viral RNAs containing two packaging signals that can form intermolecular dimers or intramolecular dimers (self-dimers) and found that one self-dimer is packaged. Therefore, HIV-1 recognizes one dimeric RNA instead of two copies of RNA. Our findings reveal that dimeric RNA recognition is the key mechanism that regulates HIV-1 genome encapsidation and provide insights into a critical step in the generation of infectious viruses.


Assuntos
Genoma Viral , HIV-1/genética , RNA Viral/genética , Vírion/genética , Montagem de Vírus/fisiologia , Variações do Número de Cópias de DNA , Dimerização , Humanos , Rim/citologia , RNA Viral/química
4.
J Virol ; 85(20): 10499-508, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21849448

RESUMO

HIV-1 and HIV-2 are derived from two distinct primate viruses and share only limited sequence identity. Despite this, HIV-1 and HIV-2 Gag polyproteins can coassemble into the same particle and their genomes can undergo recombination, albeit at an extremely low frequency, implying that HIV-1 and HIV-2 RNA can be copackaged into the same particle. To determine the frequency of HIV-1 and HIV-2 RNA copackaging and to dissect the mechanisms that allow the heterologous RNA copackaging, we directly visualized the RNA content of each particle by using RNA-binding proteins tagged with fluorescent proteins to label the viral genomes. We found that when HIV-1 and HIV-2 RNA are present in viral particles at similar ratios, ∼10% of the viral particles encapsidate both HIV-1 and HIV-2 RNAs. Furthermore, heterologous RNA copackaging can be promoted by mutating the 6-nucleotide (6-nt) dimer initiation signal (DIS) to discourage RNA homodimerization or to encourage RNA heterodimerization, indicating that HIV-1 and HIV-2 RNA can heterodimerize prior to packaging using the DIS sequences. We also observed that the coassembly of HIV-1 and HIV-2 Gag proteins is not required for the heterologous RNA copackaging; HIV-1 Gag proteins are capable of mediating HIV-1 and HIV-2 RNA copackaging. These results define the cis- and trans-acting elements required for and affecting the heterologous RNA copackaging, a prerequisite for the generation of chimeric viruses by recombination, and also shed light on the mechanisms of RNA-Gag recognition essential for RNA encapsidation.


Assuntos
HIV-1/fisiologia , RNA Viral/análise , Vírion/química , Montagem de Vírus , Dimerização , Coloração e Rotulagem/métodos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
5.
J Virol ; 85(10): 4888-97, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325415

RESUMO

Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus recently isolated from human prostate cancer and peripheral blood mononuclear cells (PBMCs) of patients with chronic fatigue syndrome (CFS). We and others have shown that host restriction factors APOBEC3G (A3G) and APOBEC3F (A3F), which are expressed in human PBMCs, inhibit XMRV in transient-transfection assays involving a single cycle of viral replication. However, the recovery of infectious XMRV from human PBMCs suggested that XMRV can replicate in these cells despite the expression of APOBEC3 proteins. To determine whether XMRV can replicate and spread in cultured PBMCs even though it can be inhibited by A3G/A3F, we infected phytohemagglutinin-activated human PBMCs and A3G/A3F-positive and -negative cell lines (CEM and CEM-SS, respectively) with different amounts of XMRV and monitored virus production by using quantitative real-time PCR. We found that XMRV efficiently replicated in CEM-SS cells and viral production increased by >4,000-fold, but there was only a modest increase in viral production from CEM cells (<14-fold) and a decrease in activated PBMCs, indicating little or no replication and spread of XMRV. However, infectious XMRV could be recovered from the infected PBMCs by cocultivation with a canine indicator cell line, and we observed hypermutation of XMRV genomes in PBMCs. Thus, PBMCs can potentially act as a source of infectious XMRV for spread to cells that express low levels of host restriction factors. Overall, these results suggest that hypermutation of XMRV in human PBMCs constitutes one of the blocks to replication and spread of XMRV. Furthermore, hypermutation of XMRV proviruses at GG dinucleotides may be a useful and reliable indicator of human PBMC infection.


Assuntos
Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Replicação Viral , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/imunologia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/patogenicidade , Desaminase APOBEC-3G , Células Cultivadas , Citidina Desaminase/genética , Citidina Desaminase/imunologia , Citosina Desaminase/genética , Citosina Desaminase/imunologia , Humanos
6.
J Virol ; 85(15): 7603-12, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21613401

RESUMO

Human immunodeficiency virus type 2 (HIV-2) has been reported to have a distinct RNA packaging mechanism, referred to as cis packaging, in which Gag proteins package the RNA from which they were translated. We examined the progeny generated from dually infected cell lines that contain two HIV-2 proviruses, one with a wild-type gag/gag-pol and the other with a mutant gag that cannot express functional Gag/Gag-Pol. Viral titers and RNA analyses revealed that mutant viral RNAs can be packaged at efficiencies comparable to that of viral RNA from which wild-type Gag/Gag-Pol is translated. These results do not support the cis-packaging hypothesis but instead indicate that trans packaging is the major mechanism of HIV-2 RNA packaging. To further characterize the mechanisms of HIV-2 RNA packaging, we visualized HIV-2 RNA in individual particles by using fluorescent protein-tagged RNA-binding proteins that specifically recognize stem-loop motifs in the viral genomes, an assay termed single virion analysis. These studies revealed that >90% of the HIV-2 particles contained viral RNAs and that RNAs derived from different viruses were copackaged frequently. Furthermore, the frequencies of heterozygous particles in the viral population could be altered by changing a 6-nucleotide palindromic sequence at the 5'-untranslated region of the HIV-2 genome. This finding indicates that selection of copackaging RNA partners occurs prior to encapsidation and that HIV-2 Gag proteins primarily package one dimeric RNA rather than two monomeric RNAs. Additionally, single virion analyses demonstrated a similar RNA distribution in viral particles regardless of whether both viruses had a functional gag or one of the viruses had a nonfunctional gag, providing further support for the trans-packaging hypothesis. Together, these results revealed mechanisms of HIV-2 RNA packaging that are, contrary to previous studies, in many respects surprisingly similar to those of HIV-1.


Assuntos
HIV-2/genética , RNA Viral/genética , Montagem de Vírus , Linhagem Celular , Citometria de Fluxo , Humanos , Vírion/genética
7.
J Virol ; 84(13): 6276-87, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20392845

RESUMO

The efficient release of newly assembled retrovirus particles from the plasma membrane requires the recruitment of a network of cellular proteins (ESCRT machinery) normally involved in the biogenesis of multivesicular bodies and in cytokinesis. Retroviruses and other enveloped viruses recruit the ESCRT machinery through three classes of short amino acid consensus sequences termed late domains: PT/SAP, PPXY, and LYPX(n)L. The major late domain of Rous sarcoma virus (RSV) has been mapped to a PPPY motif in Gag that binds members of the Nedd4 family of ubiquitin ligases. RSV Gag also contains a second putative late domain motif, LYPSL, positioned 5 amino acids downstream of PPPY. LYPX(n)L motifs have been shown to support budding in other retroviruses by binding the ESCRT adaptor protein Alix. To investigate a possible role of the LYPSL motif in RSV budding, we constructed PPPY and LYPSL mutants in the context of an infectious virus and then analyzed the budding rates, spreading profiles, and budding morphology. The data imply that the LYPSL motif acts as a secondary late domain and that its role in budding is amplified in the absence of a fully functional PPPY motif. The LYPXL motif proved to be a stronger late domain when an aspartic acid was substituted for the native serine, recapitulating the properties of the LYPDL late domain of equine infectious anemia virus. The overexpression of human Alix in the absence of a fully functional PPPY late domain partially rescued both the viral budding rate and viral replication, supporting a model in which the RSV LYPSL motif mediates budding through an interaction with the ESCRT adaptor protein Alix.


Assuntos
Produtos do Gene gag/metabolismo , Vírus do Sarcoma de Rous/fisiologia , Liberação de Vírus , Replicação Viral , Substituição de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Galinhas , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Produtos do Gene gag/genética , Humanos , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína
8.
F1000Res ; 7: 98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31231504

RESUMO

The human cell lines HepG2, HuH-7, and Jurkat are commonly used for amplification of the RNA viruses present in environmental samples. To assist with assays by RNAseq, we sequenced these cell lines and developed a subtraction database that contains sequences expected in sequence data from uninfected cells. RNAseq data from cell lines infected with Sendai virus were analyzed to test host subtraction. The process of mapping RNAseq reads to our subtraction database vastly reduced the number non-viral reads in the dataset to allow for efficient secondary analyses.


Assuntos
Bases de Dados Genéticas , Linhagem Celular , Vírus de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus
9.
F1000Res ; 7: 297, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707202

RESUMO

Background: The tick cell line ISE6, derived from Ixodes scapularis, is commonly used for amplification and detection of arboviruses in environmental or clinical samples. Methods: To assist with sequence-based assays, we sequenced the ISE6 genome with single-molecule, long-read technology. Results: The draft assembly appears near complete based on gene content analysis, though it appears to lack some instances of repeats in this highly repetitive genome. The assembly appears to have separated the haplotypes at many loci. DNA short read pairs, used for validation only, mapped to the cell line assembly at a higher rate than they mapped to the Ixodes scapularis reference genome sequence. Conclusions: The assembly could be useful for filtering host genome sequence from sequence data obtained from cells infected with pathogens.

10.
Sci Rep ; 8(1): 15843, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367096

RESUMO

The recent emergence of Zika virus (ZIKV) has been concentrated in the Caribbean, Southeastern United States, and South- and Central America; resulting in travel-based cases being reported around the globe. As multi-disciplinary collaborations are combatting the ZIKV outbreak, the need to validate the sequence of existing strains has become apparent. Here, we report high-quality sequence data for multiple ZIKV strains made publicly available through the National Institutes of Health- (NIH) funded biorepository, BEI Resources (www.beiresources.org). Next-generation sequencing, 3' rapid amplification of cDNA ends (RACE), and viral genome annotation pipelines generated GenBank sequence records for 16 BEI Resources strains. Minor variants, consensus mutations, and consensus insertions/deletions were identified within the viral stocks using next-generation sequencing (NGS) and consensus changes were confirmed with Sanger sequencing. Bioinformatics analyses of the sequencing results confirm that the virus stocks available to the scientific research community through BEI Resources adequately represent the viral population diversity of ZIKV.


Assuntos
Variação Genética , Genoma Viral , Zika virus/genética , Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , RNA Viral/química , RNA Viral/genética , Recombinação Genética , Sequenciamento Completo do Genoma , Zika virus/classificação , Infecção por Zika virus/virologia
11.
Gigascience ; 7(3): 1-13, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329394

RESUMO

Background: The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome. Results: The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads. Conclusions: The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease.


Assuntos
Aedes/virologia , Replicação Viral/genética , Infecção por Zika virus/genética , Zika virus/genética , Aedes/genética , Animais , Sequência de Bases/genética , Linhagem Celular , Genoma de Inseto/genética , Humanos , Larva/genética , Larva/virologia , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Zika virus/crescimento & desenvolvimento , Infecção por Zika virus/virologia
12.
PLoS One ; 12(6): e0178717, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28636653

RESUMO

Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interações Hospedeiro-Patógeno/imunologia , RNA de Cadeia Dupla/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Humanos , Interferons/antagonistas & inibidores , Vírus Sendai/genética , Vírus Sendai/imunologia , Transdução de Sinais , Proteínas Virais Reguladoras e Acessórias/imunologia
13.
F1000Res ; 6: 688, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28721204

RESUMO

The CP 96-1252 cultivar of sugarcane is a complex hybrid of commercial importance. DNA was extracted from lab-grown leaf tissue and sequenced. The raw Illumina DNA sequencing results provide 101 Gbp of genome sequence reads. The dataset is available from https://www.ncbi.nlm.nih.gov/bioproject/PRJNA345486/.

14.
mSystems ; 1(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822536

RESUMO

Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories.

15.
J Immunol ; 169(1): 307-14, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12077259

RESUMO

In sepsis, dysregulation of the inflammatory system is well known, as reflected in excessive inflammatory mediator production, complement activation, and appearance of defects in phagocytic cells. In the current study sepsis was induced in rats by cecal ligation/puncture. Early in sepsis the beta(1) and beta(2) integrin content on blood neutrophils increased in a nontranscriptional manner, and the increase in beta(2), but not beta(1), integrin content was C5a dependent. Similar changes could be induced in vitro on blood neutrophils following contact with phorbol ester or C5a. Direct injury of lungs of normal rats induced by deposition of IgG immune complexes (IgG-IC) caused 5-fold increases in the myeloperoxidase content that was beta(2), but not beta(1), dependent. In contrast, in cecal ligation/puncture lungs myeloperoxidase increased 10-fold after IgG immune complex deposition and was both beta(1) and beta(2) integrin dependent. These data suggest that sepsis causes enhanced neutrophil trafficking into the lung via mechanisms that are not engaged in the nonseptic state.


Assuntos
Infiltração de Neutrófilos/imunologia , Sepse/imunologia , Sepse/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Antígenos CD18/biossíntese , Antígenos CD18/sangue , Antígenos CD18/imunologia , Complemento C5a/antagonistas & inibidores , Complemento C5a/imunologia , Complemento C5a/farmacologia , Modelos Animais de Doenças , Fibronectinas/metabolismo , Citometria de Fluxo , Imunoglobulina G/administração & dosagem , Infusões Intravenosas , Integrina beta1/biossíntese , Integrina beta1/sangue , Integrina beta1/imunologia , Ligadura , Pulmão/enzimologia , Pulmão/patologia , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Peroxidase/metabolismo , Punções , Ratos , Ratos Long-Evans , Sepse/sangue , Sepse/enzimologia , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA