Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 35(2): e21318, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33508158

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects cognition and memory. Recent advances have helped identify many clinical sub-types in AD. Mounting evidence point toward structural polymorphism among fibrillar aggregates of amyloid-ß (Aß) to being responsible for the phenotypes and clinical manifestations. In the emerging paradigm of polymorphism and prion-like propagation of aggregates in AD, the role of low molecular weight soluble oligomers, which are long known to be the primary toxic agents, in effecting phenotypes remains inconspicuous. In this study, we present the characterization of three soluble oligomers of Aß42, namely 14LPOs, 16LPOs, and GM1Os with discreet biophysical and biochemical properties generated using lysophosphatidyl glycerols and GM1 gangliosides. The results indicate that the oligomers share some biophysical similarities but display distinctive differences with GM1Os. Unlike the other two, GM1Os were observed to be complexed with the lipid upon isolation. It also differs mainly in detection by conformation-sensitive dyes and conformation-specific antibodies, temperature and enzymatic stability, and in the ability to propagate morphologically-distinct fibrils. GM1Os also show distinguishable biochemical behavior with pronounced neuronal toxicity. Furthermore, all the oligomers induce cerebral amyloid angiopathy (CAA) and plaque burden in transgenic AD mice, which seems to be a consistent feature among all lipid-derived oligomers, but 16LPOs and GM1Os displayed significantly higher effect than the others. These results establish a correlation between molecular features of Aß42 oligomers and their distinguishable effects in transgenic AD mice attuned by lipid characteristics, and therefore help bridge the knowledge gap in understanding how oligomer conformers could elicit AD phenotypes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Lipídeos/farmacologia , Amiloide/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Dicroísmo Circular , Difusão Dinâmica da Luz , Gangliosídeo G(M1)/farmacologia , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Fosfatidilgliceróis/farmacologia , Placa Amiloide/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Mamm Genome ; 28(11-12): 487-497, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28983685

RESUMO

The TALLYHO (TH) mouse presents a metabolic syndrome of obesity, type 2 diabetes, and hyperlipidemia. Highly significant quantitative trait loci (QTLs) linked to adiposity and hypercholesterolemia were previously identified on chromosome (Chr) 1 in a genome-wide scan of F2 mice from C57BL/6J (B6) x TH. In this study, we generated congenic mouse strains that carry the Chr 1 QTLs derived from TH on a B6 background; B6.TH-Chr1-128Mb (128Mb in size) and B6.TH-Chr1-92Mb (92Mb in size, proximally overlapping). We characterized these congenic mice on chow and high fat (HF) diets. On chow, B6.TH-Chr1-128Mb congenic mice exhibited a slightly larger body fat mass compared with B6.TH-Chr1-92Mb congenic and B6 mice, while body fat mass between B6.TH-Chr1-92Mb congenic and B6 mice was comparable. Plasma total cholesterol levels were significantly higher in B6.TH-Chr1-128Mb congenics compared to B6.TH-Chr1-92Mb congenic and B6 mice. Again, there was no difference in plasma total cholesterol levels between B6.TH-Chr1-92Mb congenic and B6 mice. All animals gained more body fat and exhibited higher plasma total cholesterol levels when fed HF diets than fed chow, but these increases were greater in B6.TH-Chr1-128Mb congenics than in B6.TH-Chr1-92Mb congenic and B6 mice. These results confirmed the effect of the 128Mb TH segment from Chr 1 on body fat and plasma cholesterol values and showed that the distal segment of Chr 1 from TH is necessary to cause both phenotypes. Through bioinformatic approaches, we generated a list of potential candidate genes within the distal region of Chr 1 and tested Ifi202b and Apoa2. We conclude that Chr 1 QTLs largely confer obesity and hypercholesterolemia in TH mice and can be promising targets for identifying susceptibility genes. Congenic mouse strains will be a valuable resource for gene identification.


Assuntos
Cromossomos de Mamíferos/genética , Hipercolesterolemia/genética , Obesidade/genética , Locos de Características Quantitativas/genética , Tecido Adiposo , Animais , Colesterol/genética , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/métodos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Fenótipo
3.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38076912

RESUMO

We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A ß ; in plaques and in CAA; further, recombinant MDK and PTN enhance A ß ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A ß 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A ß ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.

4.
BMC Genet ; 13: 81, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23025571

RESUMO

BACKGROUND: We previously established a congenic mouse strain with TALLYHO/Jng (TH) donor segment on chromosome 6 in a C57BL/6 (B6) background that harbors an obesity quantitative trait locus, tabw2. The B6.TH-tabw2 congenic mice developed increased adiposity that became exacerbated upon feeding a high fat-high sucrose (HFS) diet. To fine map the tabw2, in this study we generated and characterized subcongenic lines with smaller TH donor segments. RESULTS: We fixed four subcongenic lines, with maximum size of donor segment retained in the lines ranging from 10.8 - 92.5 Mb. For mapping, all the subcongenic mice, along with B6.TH-tabw2 congenic and B6-homozygous control mice were fed either chow or HFS diets, and their post-mortem fat pads were weighed. Mice were also characterized for energy expenditure, respiratory exchange ratio, locomotor activity, and food intake. As previously reported, B6.TH-tabw2 congenic mice showed a significantly larger fat mass than controls on both diets. On chow, a subcongenic line retaining the distal region of the TH donor congenic interval exhibited significantly larger fat mass than B6-homozygous controls, and comparable that to B6.TH-tabw2 congenic mice. Two nested subcongenic lines within that region suggested that the effect of tabw2 on obesity could be attributed to at least two subloci. On HFS diets, on the other hand, all the subcongenic mice had significantly larger fat mass than controls without genotype differences, but none of them had fat mass as large as the original congenic mice. This possibly implicates that further genetic complexity involves in the effect of tabw2 on diet-induced obesity. Significantly reduced locomotor activity was exhibited in B6.TH-tabw2 congenic and subcongenic mice compared to controls when animals were fed HFS diets. B6.TH-tabw2 congenic mice, but not subcongenic mice, also had significantly increased food intake on HFS diets. CONCLUSIONS: It appears that at least two subloci explaining the tabw2 effect under chow feeding map to the distal region of the congenic interval, whereas the diet-induced obesity mediated by tabw2 is attributed to more complex genetic mechanism.


Assuntos
Cromossomos/genética , Obesidade/genética , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Dieta Hiperlipídica , Ingestão de Alimentos , Metabolismo Energético , Genótipo , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Atividade Motora
5.
Alzheimers Res Ther ; 12(1): 132, 2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-33069251

RESUMO

BACKGROUND: Self-assembly of the amyloid-ß (Aß) peptide into aggregates, from small oligomers to amyloid fibrils, is fundamentally linked with Alzheimer's disease (AD). However, it is clear that not all forms of Aß are equally harmful and that linking a specific aggregate to toxicity also depends on the assays and model systems used (Haass et al., J Biol. Chem 269:17741-17748, 1994; Borchelt et al., Neuron 17:1005-1013, 1996). Though a central postulate of the amyloid cascade hypothesis, there remain many gaps in our understanding regarding the links between Aß deposition and neurodegeneration. METHODS: In this study, we examined familial mutations of Aß that increase aggregation and oligomerization, E22G and ΔE22, and induce cerebral amyloid angiopathy, E22Q and D23N. We also investigated synthetic mutations that stabilize dimerization, S26C, and a phospho-mimetic, S8E, and non-phospho-mimetic, S8A. To that end, we utilized BRI2-Aß fusion technology and rAAV2/1-based somatic brain transgenesis in mice to selectively express individual mutant Aß species in vivo. In parallel, we generated PhiC31-based transgenic Drosophila melanogaster expressing wild-type (WT) and Aß40 and Aß42 mutants, fused to the Argos signal peptide to assess the extent of Aß42-induced toxicity as well as to interrogate the combined effect of different Aß40 and Aß42 species. RESULTS: When expressed in the mouse brain for 6 months, Aß42 E22G, Aß42 E22Q/D23N, and Aß42WT formed amyloid aggregates consisting of some diffuse material as well as cored plaques, whereas other mutants formed predominantly diffuse amyloid deposits. Moreover, while Aß40WT showed no distinctive phenotype, Aß40 E22G and E22Q/D23N formed unique aggregates that accumulated in mouse brains. This is the first evidence that mutant Aß40 overexpression leads to deposition under certain conditions. Interestingly, we found that mutant Aß42 E22G, E22Q, and S26C, but not Aß40, were toxic to the eye of Drosophila. In contrast, flies expressing a copy of Aß40 (WT or mutants), in addition to Aß42WT, showed improved phenotypes, suggesting possible protective qualities for Aß40. CONCLUSIONS: These studies suggest that while some Aß40 mutants form unique amyloid aggregates in mouse brains, they do not exacerbate Aß42 toxicity in Drosophila, which highlights the significance of using different systems for a better understanding of AD pathogenicity and more accurate screening for new potential therapies.


Assuntos
Doença de Alzheimer , Drosophila , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Encéfalo/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Camundongos , Fragmentos de Peptídeos/toxicidade
6.
J. inborn errors metab. screen ; 2: e130004, 2014. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1090851

RESUMO

Abstract Type 2 diabetes (T2D) and obesity are polygenic metabolic diseases, highly prevalent in humans. The TALLYHO/Jng (TH) mouse is a polygenic model of T2D and obesity that encompasses many aspects of the human conditions. In this study, we investigated the key metabolic components including β-cell physiology and energy balance involved in the development of diabetes and obesity in TH mice. Glucose-stimulated insulin secretion from freshly isolated islets was significantly enhanced in TH mice compared with normal C57BL/6 (B6) mice, similar to the compensated stage in human T2D associated with obesity. This increased glucose responsiveness was accompanied by an increase in total β-cell mass in TH mice. Energy expenditure and locomotor activity were significantly reduced in TH mice compared with B6 mice. Food intake was comparable between the two strains but water intake was more in TH mice. Together, obesity in TH mice does not appear to be due to hyperphagia, and TH mice may be a genetic model for T2D with obesity, allowing study of the important signaling or metabolic pathways leading to compensatory increases in insulin secretion and β-cell mass in insulin resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA