Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673186

RESUMO

Polarimetric synthetic aperture radar (PolSAR) image classification plays a significant role in PolSAR image interpretation. This letter presents a novel unsupervised classification method for PolSAR images based on the geodesic distance and K-Wishart distribution. The geodesic distance is obtained between the Kennaugh matrices of the observed target and canonical targets, and it is further utilized to define scattering similarity. According to the maximum scattering similarity, initial segmentation is produced, and the image is divided into three main categories: surface scattering, double-bounce scattering, and random volume scattering. Then, using the shape parameter α of K-distribution, each scattering category is further divided into three sub-categories with different degrees of heterogeneity. Finally, the K-Wishart maximum likelihood classifier is applied iteratively to update the results and improve the classification accuracy. Experiments are carried out on three real PolSAR images, including L-band AIRSAR, L-band ESAR, and C-band GaoFen-3 datasets, containing different resolutions and various terrain types. Compared with four other classic and recently developed methods, the final classification results demonstrate the effectiveness and superiority of the proposed method.

2.
Sensors (Basel) ; 21(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535468

RESUMO

Synthetic aperture radar tomography (TomoSAR) is an important 3D mapping method. Traditional TomoSAR requires a large number of observation orbits however, it is hard to meet the requirement of massive orbits. While on the one hand, this is due to funding constraints, on the other hand, because the target scene is changing over time and each observation orbit consumes lots of time, the number of orbits can be fewer as required within a narrow time window. When the number of observation orbits is insufficient, the signal-to-noise ratio (SNR), peak-to-sidelobe ratio (PSR), and resolution of 3D reconstruction results will decline severely, which seriously limits the practical application of TomoSAR. In order to solve this problem, we propose to use a deep learning network to improve the resolution and SNR of 3D reconstruction results under the condition of very few observation orbits by learning the prior distribution of targets. We use all available orbits to reconstruct a high resolution target, while only very few (around 3) orbits to reconstruct a low resolution input. The low-res and high-res 3D voxel-grid pairs are used to train a 3D super-resolution (SR) CNN (convolutional neural network) model, just like ordinary 2D image SR tasks. Experiments on the Civilian Vehicle Radar dataset show that the proposed deep learning algorithm can effectively improve the reconstruction both in quality and in quantity. In addition, the model also shows good generalization performance for targets not shown in the training set.

3.
Sensors (Basel) ; 19(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726674

RESUMO

Circular synthetic aperture radar (CSAR) has a 360° observation capability on the central observation scenario. A typical way to process CSAR imaging is to cut data into small sub-apertures because most targets are only coherent at a very small observation angle. There are many sub-aperture imaging methods after development in recent years. The back-projection algorithm is widely used because it is simple and can be applied to an arbitrary trajectory. Because of the limitation of the Nyquist sampling frequency and influence of the antenna sidelobe, azimuth ambiguity is a phenomenon that may occur in the radar imaging process. The existing researches typically choose the back-projection (BP) imaging area according to the SAR platform flight path and the antenna beam width. The limitation of the CSAR imaging area and its azimuth ambiguity region are rarely analyzed theoretically. This paper focus on the sub-aperture imaging of CSAR, based on the BP algorithm, which derives the relationship of azimuth ambiguity with CSAR parameters such as the pause repeat frequency (PRF), slant range angle, velocity of radar platform, etc. This paper proposes an equation for the calculation of the azimuth ambiguity region and analyzes the limitations, which provides theoretical support for CSAR parameter design, imaging area selection, and azimuth ambiguity analysis.

4.
Sensors (Basel) ; 18(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347854

RESUMO

The problem of synthesis scatterers in inverse synthetic aperture radar (ISAR) make it difficult to realize high-resolution three-dimensional (3D) imaging. Radar array provides an available solution to this problem, but the resolution is restricted by limited aperture size and number of antennas, leading to deterioration of the 3D imaging performance. To solve these problems, we propose a novel 3D imaging method with an array ISAR system based on sparse Bayesian inference. First, the 3D imaging model using a sparse linear array is introduced. Then the elastic net estimation and Bayesian information criterion are introduced to fulfill model order selection automatically. Finally, the sparse Bayesian inference is adopted to realize super-resolution imaging and to get the 3D image of target of interest. The proposed method is used to process real radar data of a Ku band array ISAR system. The results show that the proposed method can effectively solve the problem of synthesis scatterers and realize super-resolution 3D imaging, which verify the practicality of our proposed method.

5.
Sensors (Basel) ; 18(3)2018 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-29534464

RESUMO

The Gaofen-3 (GF-3) data processor was developed as a workstation-based GF-3 synthetic aperture radar (SAR) data processing system. The processor consists of two vital subsystems of the GF-3 ground segment, which are referred to as data ingesting subsystem (DIS) and product generation subsystem (PGS). The primary purpose of DIS is to record and catalogue GF-3 raw data with a transferring format, and PGS is to produce slant range or geocoded imagery from the signal data. This paper presents a brief introduction of the GF-3 data processor, including descriptions of the system architecture, the processing algorithms and its output format.

6.
Sensors (Basel) ; 18(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565316

RESUMO

Spotlight synthetic aperture radar (SAR) is a proven technique, which can provide high-resolution images as compared to those produced by traditional stripmap SAR. This paper addresses a high-resolution SAR focusing experiment based on Gaofen-3 satellite (GF-3) staring data with about 55 cm azimuth resolution and 240 MHz range bandwidth. In staring spotlight (ST) mode, the antenna always illuminates the same scene on the ground, which can extend the synthetic aperture. Based on a two-step processing algorithm, some special aspects such as curved-orbit model error correction, stop-and-go correction, and antenna pattern demodulation must be considered in image focusing. We provide detailed descriptions of all these aspects and put forward corresponding solutions. Using these suggested methods directly in an imaging module without any modification for other data processing software can make the most of the existing ground data processor. Finally, actual data acquired in GF-3 ST mode is used to validate these methodologies, and a well-focused, high-resolution image is obtained as a result of this focusing experiment.

7.
Sensors (Basel) ; 18(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772821

RESUMO

This paper presents an analysis of measurements of the normalized radar cross-(NRCS) in Wave Mode for Chinese C-band Gaofen-3(GF-3) synthetic aperture radar (SAR). Based on 2779 images from GF-3 quad-polarization SAR in Wave Mode and collocated wind vectors from ERA-Interim, this experiment verifies the feasibility of using ocean surface wind fields and VV-polarized NRCS to perform normalized calibration. The method uses well-validated empirical C-band geophysical model function (CMOD4) to estimate the calibration constant for each beam. In addition, the relationship between cross-pol NRCS and wind vectors is discussed. The cross-pol NRCS increases linearly with wind speed and it is obviously modulated by the wind direction when the wind speed is greater than 8 m/s. Furthermore, the properties of the polarization ratio, denoted PR, are also investigated. The PR is dependent on incidence angle and azimuth angle. Two empirical models of the PR are fitted, one as a function of incidence angle only, the other with additional dependence on azimuth angle. Assessments show that the σ VV 0 retrieved from new PR models as well as σ HH 0 is in good agreement with σ VV 0 extracted from SAR images directly.

8.
Sensors (Basel) ; 18(5)2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735947

RESUMO

Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.

9.
Sensors (Basel) ; 17(8)2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28757573

RESUMO

Multichannel synthetic aperture radar (SAR) is a breakthrough given the inherent limitation between high-resolution and wide-swath (HRWS) faced with conventional SAR. This paper aims to obtain unambiguous imaging of static scenes and moving targets with the first Chinese dual-channel spaceborne SAR sensor. We propose an integrated imaging scheme with the dual-channel echoes. In the imaging scheme, the subspace-based error estimation algorithm is first applied to the spaceborne multichannel SAR system, followed by the reconstruction algorithm prior to imaging. The motion-adapted reconstruction algorithm for moving target imaging is initially achieved with the spaceborne multichannel SAR system. The results exhibit an effective suppression of azimuth ambiguities and false targets with the proposed process. This paper verifies the accuracy of the subspace-based channel error estimator and the feasibility of the motion-adapted reconstruction algorithm. The proposed imaging process has prospects for future HRWS SAR systems with more channels.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37028292

RESUMO

Semantic comprehension aims to reasonably reproduce people's real intentions or thoughts, e.g., sentiment, humor, sarcasm, motivation, and offensiveness, from multiple modalities. It can be instantiated as a multimodal-oriented multitask classification issue and applied to scenarios, such as online public opinion supervision and political stance analysis. Previous methods generally employ multimodal learning alone to deal with varied modalities or solely exploit multitask learning to solve various tasks, a few to unify both into an integrated framework. Moreover, multimodal-multitask cooperative learning could inevitably encounter the challenges of modeling high-order relationships, i.e., intramodal, intermodal, and intertask relationships. Related research of brain sciences proves that the human brain possesses multimodal perception and multitask cognition for semantic comprehension via decomposing, associating, and synthesizing processes. Thus, establishing a brain-inspired semantic comprehension framework to bridge the gap between multimodal and multitask learning becomes the primary motivation of this work. Motivated by the superiority of the hypergraph in modeling high-order relations, in this article, we propose a hypergraph-induced multimodal-multitask (HIMM) network for semantic comprehension. HIMM incorporates monomodal, multimodal, and multitask hypergraph networks to, respectively, mimic the decomposing, associating, and synthesizing processes to tackle the intramodal, intermodal, and intertask relationships accordingly. Furthermore, temporal and spatial hypergraph constructions are designed to model the relationships in the modality with sequential and spatial structures, respectively. Also, we elaborate a hypergraph alternative updating algorithm to ensure that vertices aggregate to update hyperedges and hyperedges converge to update their connected vertices. Experiments on the dataset with two modalities and five tasks verify the effectiveness of HIMM on semantic comprehension.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(7): 1809-12, 2009 Jul.
Artigo em Zh | MEDLINE | ID: mdl-19798946

RESUMO

Fourier transform spectrometer is an important instrument in the remote sensing applications. There are phase error problems in the Fourier transform spectrometer signal processing procedure. In the present paper, the cause of phase error of Fourier transform spectrometers is shown firstly. It is mainly because of inaccuracy of sampling. Then the nonlinearity of phase error is analyzed. It is suggested that it is because that the interferogram is of finite length and the interferogram is discrete that this nonlinearity exists. The authors studied this problem with a new method. The nonlinearity is shown by rigorous derivation and the authors draw the conclusion by reasoning. Then through the nonlinearity of phase error, the authors have a discussion on the possible error in the Mertz phase correcting method. The possible error lies in the phase interpolation procedure, a part of Mertz method. A method consisting of zero adding and transforming is given to reduce this error. The methods are compared and illustrated by an experiment which uses simulated interferogram from standard spectrum library. The experiment demonstrates that the method of zero adding and transforming can reduce the phase error of phase interpolation and improve the problem of rapid phase change under some circumstances, which can help get better spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA