Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 16(2): 2711-2720, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35113510

RESUMO

MXenes are promising cathode materials for aqueous zinc-ion batteries (AZIBs) owing to their layered structure, metallic conductivity, and hydrophilicity. However, they suffer from low capacities unless they are subjected to electrochemically induced second phase formation, which is tedious, time-consuming, and uncontrollable. Here we propose a facile one-step surface selenization strategy for realizing advanced MXene-based nanohybrids. Through the selenization process, the surface metal atoms of MXenes are converted to transition metal selenides (TMSes) exhibiting high capacity and excellent structural stability, whereas the inner layers of MXenes are purposely retained. This strategy is applicable to various MXenes, as demonstrated by the successful construction of VSe2@V2CTx, TiSe2@Ti3C2Tx, and NbSe2@Nb2CTx. Typically, VSe2@V2CTx delivers high-rate capability (132.7 mA h g-1 at 2.0 A g-1), long-term cyclability (93.1% capacity retention after 600 cycles at 2.0 A g-1), and high capacitive contribution (85.7% at 2.0 mV s-1). Detailed experimental and simulation results reveal that the superior Zn-ion storage is attributed to the engaging integration of V2CTx and VSe2, which not only significantly improves the Zn-ion diffusion coefficient from 4.3 × 10-15 to 3.7 × 10-13 cm2 s-1 but also provides sufficient structural stability for long-term cycling. This study offers a facile approach for the development of high-performance MXene-based materials for advanced aqueous metal-ion batteries.

2.
ACS Appl Mater Interfaces ; 13(19): 23282-23288, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33944549

RESUMO

Ferroelectric tunnel junctions (FTJs) as artificial synaptic devices are promising candidates for the building block of nonvolatile data storage devices. However, a small ON/OFF ratio of FTJs limits their application in low-temperature operations. In this work, the influence of quantum interference effects on tunneling electroresistance in the La0.7Sr0.3MnO3/BaTiO3/Nb:SrTiO3 (ferromagnetic metal/ferroelectric/semiconductor) FTJ at low temperatures is investigated. The Current-voltage curves are observed in the tunnel junction from 300 to 10 K with a six-unit-cell thick BaTiO3 film by the ferroelectric polarization effect. First, the ON/OFF current ratio increases from 300 to 30 K due to the increase of polarization in the ferroelectric barrier, and then, it gradually decreases when the temperature drops below 30 K. An anomalous ON/OFF current ratio of ∼105 is obtained at 30 K. The low-temperature tunneling properties in the FTJ are associated with a low-temperature resistivity minimum in the ferromagnetic metal layer by the electron-electron interaction, which increases the La0.7Sr0.3MnO3/BaTiO3 interface resistance, leading to a higher resistance state and lower IOFF for the OFF state. As a result, the ON/OFF current ratio is abruptly enhanced at 30 K. Our results emphasize the crucial role of transport properties of La0.7Sr0.3MnO3 in FTJs and pave the way for the design and application of FTJs at low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA