Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Small ; 18(13): e2105998, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119205

RESUMO

A cantilever-free scanning probe lithography (CF-SPL)-based method for the rapid polymerization of nanoscale features on a surface via crosslinking and thiol-acrylate photoreactions is described, wherein the nanoscale position, height, and diameter of each feature can be finely and independently tuned. With precise spatiotemporal control over the illumination pattern, beam pen lithography (BPL) allows for the photo-crosslinking of polymers into ultrahigh resolution features over centimeter-scale areas using massively parallel >160 000 pen arrays of individually addressable pens that guide and focus light onto the surface with sub-diffraction resolution. The photoinduced crosslinking reaction of the ink material, which is composed of photoinitiator, diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide, poly(ethylene glycol) diacrylate, and thiol-modified functional binding molecules (i.e., thiol-PEG-biotin or 16-mercaptohexanoic acid), proceeds to ≈80% conversion with UV exposure (72 mW cm-2 ) for short time periods (0.5 s). Such polymer patterns are further reacted with proteins (streptavidin and fibronectin) to yield protein arrays with feature arrangements at high resolution and densities controlled by local UV exposure. This platform, which combines polymer photochemistry and massive arrays of scanning probes, constitutes a new approach to making biomolecular microarrays in a high-throughput and high-yielding manner, opening new routes for biochip synthesis, bioscreening, and cell biology research.


Assuntos
Nanotecnologia , Impressão , Nanotecnologia/métodos , Polímeros/química , Impressão/métodos
2.
Neurobiol Dis ; 121: 1-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218757

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by accumulation of misfolded α-synuclein within the central nervous system (CNS). Visual problems in PD patients are common, although retinal pathology associated with PD is not well understood. The purpose of this study was to investigate retinal pathology in a transgenic mouse model (TgM83) expressing the human A53T α-synuclein mutation and assess the effect of α-synuclein "seeding" on the development of retinal pathology. Two-month-old TgM83 mice were intracerebrally inoculated with brain homogenate from old (12-18 months) TgM83 mice. Retinas were then analyzed at 5 months of age. We analyzed retinas from 5-month-old and 8-month-old uninoculated healthy TgM83 mice, and old (12-18 months) mice that were euthanized following the development of clinical signs. Retinas of B6C3H mice (genetic background of the TgM83 mouse) served as control. We used immunohistochemistry and western blot analysis to detect accumulation of α-synuclein, pTauThr231, inflammation, changes in macroautophagy, and cell death. Raman spectroscopy was used to test the potential to differentiate between retinal tissues of healthy mice and diseased mice. This work demonstrates retinal changes associated with the A53T mutation. Retinas of non-inoculated TgM83 mice had accumulation of α-synuclein, "pre-tangle" tau, activation of retinal glial cells, and photoreceptor cell loss by 8 months of age. The development of these changes is accelerated by inoculation with brain homogenate from clinically ill TgM83 mice. Compared to non-inoculated 5-month-old TgM83 mice, retinas of inoculated 5-month-old mice had increased accumulation of α-synuclein (pSer129) and pTauThr231 proteins, upregulated microglial activation, and dysregulated macroautophagy. Raman spectroscopic analysis was able to discriminate between healthy and diseased mice. This study describes retinal pathology resulting from the A53T mutation. We show that seeding with brain homogenates from old TgM83 mice accelerates retinal pathology. We demonstrate that Raman spectroscopy can be used to accurately identify a diseased retina based on its biochemical profile, and that α-synuclein accumulation may contribute to accumulation of pTauThr231 proteins, neuroinflammation, metabolic dysregulation, and photoreceptor cell death. Our work provides insight into retinal changes associated with Parkinson's disease, and may contribute to a better understanding of visual symptoms experienced by patients.


Assuntos
Autofagia , Encefalite/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Retina/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Encefalite/complicações , Camundongos Transgênicos , Neuroglia/metabolismo , Doença de Parkinson/complicações , Fosforilação , Retina/patologia
3.
Sensors (Basel) ; 15(6): 14766-87, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26110411

RESUMO

Nanocarbon allotropes (NCAs), including zero-dimensional carbon dots (CDs), one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene, exhibit exceptional material properties, such as unique electrical/thermal conductivity, biocompatibility and high quenching efficiency, that make them well suited for both electrical/electrochemical and optical sensors/biosensors alike. In particular, these material properties have been exploited to significantly enhance the transduction of biorecognition events in fluorescence-based biosensing involving Förster resonant energy transfer (FRET). This review analyzes current advances in sensors and biosensors that utilize graphene, CNTs or CDs as the platform in optical sensors and biosensors. Widely utilized synthesis/fabrication techniques, intrinsic material properties and current research examples of such nanocarbon, FRET-based sensors/biosensors are illustrated. The future outlook and challenges for the research field are also detailed.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Nanotubos de Carbono , Grafite
4.
Clin Neurol Neurosurg ; 241: 108309, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713963

RESUMO

OBJECTIVE: To explore the diagnostic value and clinical significance of lncRNA LINC01123 (LINC01123) binding fibrinogen in acute cerebral infarction (ACI) by evaluating the expression and potential molecular mechanism of LINC01123 in patients with acute cerebral infarction. METHODS: The clinical data of all the volunteers were collected. The level of serum LINC01123 in ACI patients was detected by RT-qPCR. The relationship between LINC01123 and fibrinogen was studied via Pearson's correlation analysis. ROC curve was used to evaluate the diagnostic value of LINC01123 and fibrinogen for ACI. The risk factors of ACI were investigated by Binary Logistic regression analysis. And the targeting relationship between LINC01123 and downstream miR-361-3p was verified through luciferase activity assay. RESULTS: Serum LINC01123 and fibrinogen levels were upregulated in ACI patients compared with healthy controls (P < 0.001), and there was a positive correlation between them (r = 0.6537, P < 0.001). In predicting the occurrence of ACI, LINC01123 and fibrinogen have high diagnostic value, and the AUC of combined diagnosis was 0.961, and the sensitivity and specificity (92.54%, 85.82%) were more significant. Meanwhile, LINC01123 and fibrinogen were confirmed to be independent risk factors for ACI (P < 0.0001). Mechanistically, miR-361-3p is the target of LINC01123. The expression of miR-361-3p was low in the serum of ACI patients, which was negatively correlated with the LINC01123 expression (r = -0.6885, P < 0.0001). CONCLUSION: LINC01123 combined with fibrinogen may have important reference value in the diagnosis of ACI as serum markers, which may become clinical indicators to predict the occurrence of ACI.


Assuntos
Infarto Cerebral , Fibrinogênio , MicroRNAs , RNA Longo não Codificante , Humanos , Fibrinogênio/metabolismo , Fibrinogênio/análise , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , Masculino , Infarto Cerebral/genética , Infarto Cerebral/sangue , Infarto Cerebral/diagnóstico , Feminino , Pessoa de Meia-Idade , Idoso , MicroRNAs/sangue , Adulto , Biomarcadores/sangue , Relevância Clínica
5.
BioData Min ; 17(1): 20, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951833

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a major microvascular complication of diabetes and has become the leading cause of end-stage renal disease worldwide. A considerable number of DN patients have experienced irreversible end-stage renal disease progression due to the inability to diagnose the disease early. Therefore, reliable biomarkers that are helpful for early diagnosis and treatment are identified. The migration of immune cells to the kidney is considered to be a key step in the progression of DN-related vascular injury. Therefore, finding markers in this process may be more helpful for the early diagnosis and progression prediction of DN. METHODS: The gene chip data were retrieved from the GEO database using the search term ' diabetic nephropathy '. The ' limma ' software package was used to identify differentially expressed genes (DEGs) between DN and control samples. Gene set enrichment analysis (GSEA) was performed on genes obtained from the molecular characteristic database (MSigDB. The R package 'WGCNA' was used to identify gene modules associated with tubulointerstitial injury in DN, and it was crossed with immune-related DEGs to identify target genes. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on differentially expressed genes using the 'ClusterProfiler' software package in R. Three methods, least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE) and random forest (RF), were used to select immune-related biomarkers for diagnosis. We retrieved the tubulointerstitial dataset from the Nephroseq database to construct an external validation dataset. Unsupervised clustering analysis of the expression levels of immune-related biomarkers was performed using the 'ConsensusClusterPlus 'R software package. The urine of patients who visited Dongzhimen Hospital of Beijing University of Chinese Medicine from September 2021 to March 2023 was collected, and Elisa was used to detect the mRNA expression level of immune-related biomarkers in urine. Pearson correlation analysis was used to detect the effect of immune-related biomarker expression on renal function in DN patients. RESULTS: Four microarray datasets from the GEO database are included in the analysis : GSE30122, GSE47185, GSE99340 and GSE104954. These datasets included 63 DN patients and 55 healthy controls. A total of 9415 genes were detected in the data set. We found 153 differentially expressed immune-related genes, of which 112 genes were up-regulated, 41 genes were down-regulated, and 119 overlapping genes were identified. GO analysis showed that they were involved in various biological processes including leukocyte-mediated immunity. KEGG analysis showed that these target genes were mainly involved in the formation of phagosomes in Staphylococcus aureus infection. Among these 119 overlapping genes, machine learning results identified AGR2, CCR2, CEBPD, CISH, CX3CR1, DEFB1 and FSTL1 as potential tubulointerstitial immune-related biomarkers. External validation suggested that the above markers showed diagnostic efficacy in distinguishing DN patients from healthy controls. Clinical studies have shown that the expression of AGR2, CX3CR1 and FSTL1 in urine samples of DN patients is negatively correlated with GFR, the expression of CX3CR1 and FSTL1 in urine samples of DN is positively correlated with serum creatinine, while the expression of DEFB1 in urine samples of DN is negatively correlated with serum creatinine. In addition, the expression of CX3CR1 in DN urine samples was positively correlated with proteinuria, while the expression of DEFB1 in DN urine samples was negatively correlated with proteinuria. Finally, according to the level of proteinuria, DN patients were divided into nephrotic proteinuria group (n = 24) and subrenal proteinuria group. There were significant differences in urinary AGR2, CCR2 and DEFB1 between the two groups by unpaired t test (P < 0.05). CONCLUSIONS: Our study provides new insights into the role of immune-related biomarkers in DN tubulointerstitial injury and provides potential targets for early diagnosis and treatment of DN patients. Seven different genes ( AGR2, CCR2, CEBPD, CISH, CX3CR1, DEFB1, FSTL1 ), as promising sensitive biomarkers, may affect the progression of DN by regulating immune inflammatory response. However, further comprehensive studies are needed to fully understand their exact molecular mechanisms and functional pathways in DN.

6.
ACS Appl Mater Interfaces ; 12(7): 8592-8603, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32040290

RESUMO

Graphene-based inks are becoming increasingly attractive for printing low-cost and flexible electrical circuits due to their high electrical conductivity, biocompatibility, and manufacturing scalability. Conventional graphene printing techniques, such as screen and inkjet printing, are limited by stringent ink viscosity requirements properties and large as-printed line width that impedes the performance of printed biosensors. Here, we report an aerosol-jet-printed (AJP) graphene-based immunosensor capable of monitoring two distinct cytokines: interferon gamma (IFN-γ) and interleukin 10 (IL-10). Interdigitated electrodes (IDEs) with 40 µm finger widths were printed from graphene-nitrocellulose ink on a polyimide substrate. The IDEs were annealed in CO2 to introduce reactive oxygen species on the graphene surface that act as chemical handles to covalently link IFN-γ and IL-10 antibodies to the graphene surfaces. The resultant AJP electrochemical immunosensors are capable of monitoring cytokines in serum with wide sensing range (IFN-γ: 0.1-5 ng/mL; IL-10: 0.1-2 ng/mL), low detection limit (IFN-γ: 25 pg/ml and IL-10: 46 pg/ml) and high selectivity (antibodies exhibited minimal cross-reactivity with each other and IL-6) without the need for sample prelabeling or preconcentration. Moreover, these biosensors are mechanically flexible with minimal change in signal output after 250 bending cycles over a high curvature (Φ = 5 mm). Hence, this technology could be applied to numerous electrochemical applications that require low-cost electroactive circuits that are disposable and/or flexible.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Grafite/química , Interferon gama/sangue , Interleucina-10/sangue , Nanoestruturas/química , Impressão Tridimensional/instrumentação , Aerossóis/química , Animais , Anticorpos/imunologia , Técnicas Biossensoriais/instrumentação , Dióxido de Carbono/química , Bovinos , Colódio/química , Condutividade Elétrica , Técnicas Eletroquímicas/instrumentação , Eletrodos , Imidas/química , Tinta , Interferon gama/imunologia , Interleucina-10/imunologia , Limite de Detecção , Microscopia de Força Atômica , Microscopia Confocal , Nanoestruturas/ultraestrutura , Polímeros , Espécies Reativas de Oxigênio/química , Análise Espectral , Análise Espectral Raman , Propriedades de Superfície
7.
Adv Healthc Mater ; 7(14): e1701046, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29656561

RESUMO

Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.


Assuntos
Células-Tronco Adultas/citologia , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiologia , Células-Tronco Adultas/fisiologia , Animais , Materiais Biocompatíveis/química , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Humanos , Alicerces Teciduais/química
8.
Biosens Bioelectron ; 117: 68-74, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29886188

RESUMO

Vertically aligned carbon nanotube array (VANTA) coatings have recently garnered significant attention due in part to their unique material properties including light absorption, chemical inertness, and electrical conductivity. Herein we report the first use of VANTAs grown via chemical vapor deposition in a 2D interdigitated electrode (IDE) footprint with a high height-to-width aspect ratio (3:1 or 75:25 µm). The VANTA-IDEs were functionalized with an antibody (Ab) specific to the human cancerous inhibitor PP2A (CIP2A)-an oncoprotein that is associated with a variety of malignancies such as oral, breast, and multiple myeloma cancers. The resultant label-free immunosensor was capable of detecting CIP2A across a wide linear sensing range (1-100 pg/mL) with a detection limit of 0.24 pg/mL within saliva supernatant-a range that is more sensitive than the corresponding CIP2A enzyme linked immunosorbent assay (ELISA). These results help pave the way for rapid cancer screening tests at the point-of-care (POC) such as for the early-stage diagnosis of oral cancer at a dentist's office.


Assuntos
Autoantígenos/metabolismo , Técnicas Biossensoriais/métodos , Detecção Precoce de Câncer/métodos , Proteínas de Membrana/metabolismo , Neoplasias Bucais/diagnóstico , Nanotubos de Carbono/química , Anticorpos/metabolismo , Técnicas Biossensoriais/normas , Eletrodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito
9.
ACS Appl Mater Interfaces ; 9(51): 44429-44440, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29206439

RESUMO

To enhance the energy density of solid-state supercapacitors, a novel solid-state cell, made of redox-active poly(vinyl alcohol) (PVA) hydrogel electrolytes and functionalized carbon nanotube-coated cellulose paper electrodes, was investigated in this work. Briefly, acidic PVA-[BMIM]Cl-lactic acid-LiBr and neutral PVA-[BMIM]Cl-sodium acetate-LiBr hydrogel polymer electrolytes are used as catholyte and anolyte, respectively. The acidic condition of the catholyte contributes to suppression of the undesired irreversible reaction of Br- and extension of the oxygen evolution reaction potential to a higher value than that of the redox potential of Br-/Br3- reaction. The observed Br-/Br3- redox activity at the cathode contributes to enhance the cathode capacitance. The neutral condition of the anolyte helps extend the operating voltage window of the supercapacitor by introducing hydrogen evolution reaction overpotential to the anode. The electrosorption of nascent H on the negative electrode also increases the anode capacitance. As a result, the prepared solid-state hybrid supercapacitor shows a broad voltage window of 1.6 V, with a high Coulombic efficiency of 97.6% and the highest energy density of 16.3 Wh/kg with power density of 932.6 W/kg at 2 A/g obtained. After 10 000 cycles of galvanostatic charge and discharge tests at the current density of 10 A/g, it exhibits great cyclic stability with 93.4% retention of the initial capacitance. In addition, a robust capacitive performance can also be observed from the solid-state supercapacitor at different bending angles, indicating its great potential as a flexible energy storage device.

10.
Am J Transl Res ; 9(3): 1335-1343, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386359

RESUMO

Atherosclerosis (AS) is the number one killer in developed countries, and currently considered a chronic inflammatory disease. The central role of T cells in the pathogenesis of atherosclerosis is well documented. However, little is known about the newly described T cell subset-Th9 cells and their role in AS pathogenesis. Here, the amounts of Th9 cells as well as their key transcription factors and relevant cytokines during atherosclerosis were assessed in ApoE-/- mice and age-matched C57BL/6J mice. Significantly increased Th9 cell number, Th9 related cytokine (IL-9), and key transcription factor (PU.1) were found in ApoE-/- mice compared with age-matched C57BL/6J mice. Additionally, treatment with rIL-9 accelerated atherosclerotic development, which was attenuated by anti-IL-9 antibodies. These data suggested that both Th9 cells and related IL-9 play key roles in the pathogenesis of atherosclerosis, and antibodies against these antigens offer a novel therapeutic approach in AS treatment.

11.
Am J Transl Res ; 9(11): 5160-5168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218113

RESUMO

T-helper 17 (Th17) cells produce Interleukin-17 (IL-17) that plays an important role in host-defense. However, little is known whether aging affects the functions of human Th17 cells. In this study, we examine age-associated alteration in Th17-cell response; correlation between Th17-cells and endothelial cell senescence; and the occurrence of acute cerebral infarction (ACI). First, we examined Th17-frequency, phenotyping, key transcription factors, and relevant cytokines in healthy elderly, middle-aged and young-people along with elderly-patients with ACI. We detected levels of endothelial cell senescence markers in mRNA and inflammatory biomarker in serum among the groups. Correlations of Th17 frequency to levels of cytokines and endothelial cell senescence biomarkers have been analyzed. Finally, effects of IL-17 on endothelial cell senescence were explored in vitro. Our study demonstrated that healthy elderly-people have an increased Th17 frequency, RORγt expression and Th17 related cytokines (IL-17, IL-6) levels in peripheral blood compared to healthy middle-aged and young-people. Furthermore, elderly-ACI patients also have an increased Th17 expression as compared to healthy elderly-people. There was no significant difference in levels of memory Th17 frequency among the 4 groups, indicating that IL-17 is mainly produced by memory CD4+ T cells. There were no significant correlations between Th17 frequencies, levels of cytokines, inflammatory biomarkers in serum and endothelial cell senescence biomarkers in mRNA. Cell experiments about human umbilical vein endothelial cells (HUVECs) co-culture with IL-17 demonstrated that IL-17 promotes endothelial cell senescence which is closely related to ACI occurrence. Our results suggested that aging and ACI occurrence strengthen Th17-cell response. Th17/IL-17 may promote endothelial cell senescence, subsequently contributing to ACI occurrence in humans.

12.
ACS Sens ; 2(2): 210-217, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28723140

RESUMO

A label-free electrochemical impedance spectroscopy (EIS) aptasensor for rapid detection (<35 min) of interferon-gamma (IFN-γ) was fabricated by immobilizing a RNA aptamer capture probe (ACP), selective to IFN-γ, on a gold interdigitated electrode array (Au IDE). The ACP was modified with a thiol group at the 5' terminal end and subsequently co-immobilized with 1,6-hexanedithiol (HDT) and 6-mercapto-1-hexanolphosphate (MCH) to the gold surface through thiol-gold interactions. This ACP/HDT-MCH ternary surface monolayer facilitates efficient hybridization with IFN-γ and displays high resistance to nonspecific adsorption of nontarget proteins [i.e., fetal bovine serum (FBS) and bovine serum albumin (BSA)]. The Au IDE functionalized with ACP/HDT-MCH was able to measure IFN-γ in actual FBS solution with a linear sensing range from 22.22 pM to 0.11 nM (1-5 ng/mL) and a detection limit of 11.56 pM. The ability to rapidly sense IFN-γ within this sensing range makes the developed electrochemical platform conducive toward in-field disease detection of a variety of diseases including paratuberculosis (i.e., Johne's Disease). Furthermore, experimental results were numerically validated with an equivalent circuit model that elucidated the effects of the sensing process and the influence of the immobilized ternary monolayer on signal output. This is the first time that ternary surface monolayers have been used to selectively capture/detect IFN-γ on Au IDEs.

13.
Adv Healthc Mater ; 6(7)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28218474

RESUMO

Graphene-based materials (GBMs) have displayed tremendous promise for use as neurointerfacial substrates as they enable favorable adhesion, growth, proliferation, spreading, and migration of immobilized cells. This study reports the first case of the differentiation of mesenchymal stem cells (MSCs) into Schwann cell (SC)-like phenotypes through the application of electrical stimuli from a graphene-based electrode. Electrical differentiation of MSCs into SC-like phenotypes is carried out on a flexible, inkjet-printed graphene interdigitated electrode (IDE) circuit that is made highly conductive (sheet resistance < 1 kΩ/sq) via a postprint pulse-laser annealing process. MSCs immobilized on the graphene printed IDEs and electrically stimulated/treated (etMSCs) display significant enhanced cellular differentiation and paracrine activity above conventional chemical treatment strategies [≈85% of the etMSCs differentiated into SC-like phenotypes with ≈80 ng mL-1 of nerve growth factor (NGF) secretion vs. 75% and ≈55 ng mL-1 for chemically treated MSCs (ctMSCs)]. These results help pave the way for in vivo peripheral nerve regeneration where the flexible graphene electrodes could conform to the injury site and provide intimate electrical simulation for nerve cell regrowth.


Assuntos
Diferenciação Celular , Grafite/química , Células-Tronco Mesenquimais/metabolismo , Células de Schwann/metabolismo , Animais , Estimulação Elétrica , Células-Tronco Mesenquimais/citologia , Ratos , Células de Schwann/citologia
14.
ACS Appl Mater Interfaces ; 9(14): 12719-12727, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28218507

RESUMO

Inkjet printed graphene (IPG) has recently shown tremendous promise in reducing the cost and complexity of graphene circuit fabrication. Herein we demonstrate, for the first time, the fabrication of an ion selective electrode (ISE) with IPG. A thermal annealing process in a nitrogen ambient environment converts the IPG into a highly conductive electrode (sheet resistance changes from 52.8 ± 7.4 MΩ/□ for unannealed graphene to 172.7 ± 33.3 Ω/□ for graphene annealed at 950 °C). Raman spectroscopy and field emission scanning electron microscopy (FESEM) analysis reveals that the printed graphene flakes begin to smooth at an annealing temperature of 500 °C and then become more porous and more electrically conductive when annealed at temperatures of 650 °C and above. The resultant thermally annealed, IPG electrodes are converted into potassium ISEs via functionalization with a poly(vinyl chloride) (PVC) membrane and valinomycin ionophore. The developed potassium ISE displays a wide linear sensing range (0.01-100 mM), a low detection limit (7 µM), minimal drift (8.6 × 10-6 V/s), and a negligible interference during electrochemical potassium sensing against the backdrop of interfering ions [i.e., sodium (Na), magnesium (Mg), and calcium (Ca)] and artificial eccrine perspiration. Thus, the IPG ISE shows potential for potassium detection in a wide variety of human fluids including plasma, serum, and sweat.

15.
Nanoscale ; 8(35): 15870-9, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27510913

RESUMO

Emerging research on printed and flexible graphene-based electronics is beginning to show tremendous promise for a wide variety of fields including wearable sensors and thin film transistors. However, post-print annealing/reduction processes that are necessary to increase the electrical conductivity of the printed graphene degrade sensitive substrates (e.g., paper) and are whole substrate processes that are unable to selectively anneal/reduce only the printed graphene-leaving sensitive device components exposed to damaging heat or chemicals. Herein a pulsed laser process is introduced that can selectively irradiate inkjet printed reduced graphene oxide (RGO) and subsequently improve the electrical conductivity (Rsheet∼0.7 kΩ□(-1)) of printed graphene above previously published reports. Furthermore, the laser process is capable of developing 3D petal-like graphene nanostructures from 2D planar printed graphene. These visible morphological changes display favorable electrochemical sensing characteristics-ferricyanide cyclic voltammetry with a redox peak separation (ΔEp) ≈ 0.7 V as well as hydrogen peroxide (H2O2) amperometry with a sensitivity of 3.32 µA mM(-1) and a response time of <5 s. Thus this work paves the way for not only paper-based electronics with graphene circuits, it enables the creation of low-cost and disposable graphene-based electrochemical electrodes for myriad applications including sensors, biosensors, fuel cells, and theranostic devices.

16.
Curr Opin Biotechnol ; 34: 242-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957941

RESUMO

The efficiency and selectivity of enzymatic catalysis is useful to a plethora of industrial and manufacturing processes. Many of these processes require the immobilization of enzymes onto surfaces, which has traditionally reduced enzyme activity. However, recent research has shown that the integration of nanoparticles into enzyme carrier schemes has maintained or even enhanced immobilized enzyme performance. The nanoparticle size and surface chemistry as well as the orientation and density of immobilized enzymes all contribute to the enhanced performance of enzyme-nanoparticle conjugates. These improvements are noted in specific nanoparticles including those comprising carbon (e.g., graphene and carbon nanotubes), metal/metal oxides and polymeric nanomaterials, as well as semiconductor nanocrystals or quantum dots.


Assuntos
Nanopartículas/química , Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanotubos de Carbono/química , Polímeros/química , Pontos Quânticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA