Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Lab Invest ; 103(1): 100017, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748194

RESUMO

FoxO1 is an important transcriptional factor that regulates cell survival and metabolism in many tissues. Deleting FoxO1 results in embryonic death due to failure of chorioallantoic fusion at E8.5; however, its role in placental development during mid-late gestation is unclear. In both human patients with gestational diabetes and pregnant mice with hyperglycemia, placental FoxO1 expression was significantly increased. Using FoxO1+/- mice, the effects of FoxO1 haploinsufficiency on placental development under normoglycemia and hyperglycemia were investigated. With FoxO1 haploinsufficiency, the term placental weight increased under both normal and hyperglycemic conditions. Under normoglycemia, this weight change was associated with a general enlargement of the labyrinth, along with increased cell proliferation, decreased cell apoptosis, and decreased expression of p21, p27, Casp3, Casp8, and Rip3. However, under hyperglycemia, the placental weight change was associated with increased fetal blood space, VEGFA overexpression, and expression changes of the angiogenic markers, Eng and Tsp1. In conclusion, FoxO1 plays a role in regulating cell proliferation, cell survival, or angiogenesis, depending on blood glucose levels, during placenta development.


Assuntos
Diabetes Gestacional , Proteína Forkhead Box O1 , Hiperglicemia , Animais , Feminino , Humanos , Camundongos , Gravidez , Proliferação de Células/genética , Diabetes Gestacional/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Hiperglicemia/genética , Hiperglicemia/metabolismo , Placenta/metabolismo
2.
Liver Int ; 41(6): 1305-1319, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33529448

RESUMO

BACKGROUND & AIMS: Pregnant women may transmit their metabolic phenotypes to their offspring, enhancing the risk for nonalcoholic fatty liver disease (NAFLD); however, the molecular mechanisms remain unclear. METHODS: Prior to pregnancy female mice were fed either a maternal normal-fat diet (NF-group, "no effectors"), or a maternal high-fat diet (HF-group, "persistent effectors"), or were transitioned from a HF to a NF diet before pregnancy (H9N-group, "effectors removal"), followed by pregnancy and lactation, and then offspring were fed high-fat diets after weaning. Offspring livers were analysed by functional studies, as well as next-generation sequencing for gene expression profiles and DNA methylation changes. RESULTS: The HF, but not the H9N offspring, displayed glucose intolerance and hepatic steatosis. The HF offspring also displayed a disruption of lipid homeostasis associated with an altered methionine cycle and abnormal one-carbon metabolism that caused DNA hypermethylation and L-carnitine depletion associated with deactivated AMPK signalling and decreased expression of PPAR-α and genes for fatty acid oxidation. These changes were not present in H9N offspring. In addition, we identified maternal HF diet-induced genes involved in one-carbon metabolism that were associated with DNA methylation modifications in HF offspring. Importantly, the DNA methylation modifications and their associated gene expression changes were reversed in H9N offspring livers. CONCLUSIONS: Our results demonstrate for the first time that maternal HF diet disrupted the methionine cycle and one-carbon metabolism in offspring livers which further altered lipid homeostasis. CpG islands of specific genes involved in one-carbon metabolism modified by different maternal diets were identified.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Efeitos Tardios da Exposição Pré-Natal , Animais , Carbono/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Gravidez
3.
Life (Basel) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38929712

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly emerging as the most prevalent chronic liver disease, closely linked to the escalating rates of diabesity. The Western diet's abundance of fat and fructose significantly contributes to MASLD, disrupting hepatic glucose metabolism. We previously demonstrated that a high-fat and high-fructose diet (HFHFD) led to increased body and liver weight compared to the low-fat diet (LFD) group, accompanied by glucose intolerance and liver abnormalities, indicating an intermediate state between fatty liver and liver fibrosis in the HFHFD group. Sirtuins are crucial epigenetic regulators associated with energy homeostasis and play a pivotal role in these hepatic dysregulations. Our investigation revealed that HFHFD significantly decreased Sirt1 and Sirt7 gene and protein expression levels, while other sirtuins remained unchanged. Additionally, glucose 6-phosphatase (G6Pase) gene expression was reduced in the HFHFD group, suggesting a potential pathway contributing to fibrosis progression. Chromatin immunoprecipitation analysis demonstrated a significant increase in histone H3 lysine 18 acetylation within the G6Pase promoter in HFHFD livers, potentially inhibiting G6Pase transcription. In summary, HFHFD may inhibit liver gluconeogenesis, potentially promoting liver fibrosis by regulating Sirt7 expression. This study offers an epigenetic perspective on the detrimental impact of fructose on MASLD progression.

4.
Curr Res Toxicol ; 7: 100188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175913

RESUMO

The exposure to the ubiquitous phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP) is connected to dysregulated trophoblast function and placenta health; however, the underlying mechanisms preluding this scenario remain to be elucidated. In this study, we explored the hypoxemic effects of MEHP on a human placental first-trimester trophoblast cell line (HTR-8/Svneo). MEHP-treated trophoblast cells displayed significantly increased levels of oxidative stress and hypoxia-inducible factor-1 alpha (HIF-1α) attributed by the induction of hypoxia. Further, HIF-1α exhibited higher DNA binding activity and upregulated gene expression of its downstream target vascular endothelial growth factor A (VEGFA). The hypoxia-induced microRNA miR-210-3p was also significantly increased upon MEHP treatment followed by disrupted mitochondrial ATP generation and membrane potential. This was identified to possibly be facilitated by lowered mitochondrial DNA copy number and inhibited expression of electron transport chain subunits, such as mitochondrial complex-IV. These results suggest potential adverse effects of MEHP exposure in a trophoblast cell line mediated by HIF-1α and the epigenetic modulator miR-210-3p. Chronic placental hypoxia and oxidative stress have long been implicated in the pathogenesis of pregnancy complications such as preeclampsia. As we've revealed genetic and epigenetic factors underscoring a potential mechanism induced by MEHP, this brings to light another significant implication of phthalate exposure on maternal and fetal health.

5.
J Nutr Biochem ; 111: 109157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150682

RESUMO

Gata4 is a member of the zinc finger GATA transcription factor family and is required for liver development during the embryonic stage. Gata4 expression is repressed during NAFLD progression, however how it functions in this situation remains unclear. Here, Gata4 was deleted specifically in hepatocytes via Cre recombinase driven by the Alb promoter region. Under a high-fat diet (HFD) or methionine and choline deficient diet (MCD), Gata4 knockout (KO) male, but not female, mice displayed more severe NAFLD or NASH, evidenced by increased steatosis, fibrosis, as well as a higher NAS score and serum ALT level. The Gata4KO male liver exposed to a HFD or MCD had a reduced ratio of pACC/ACC, similar to the Gata4KO hepatocytes treated with palmitic acid. More cell apoptosis, which is associated with activated JNK signaling and inhibited NFκB signaling, was observed in the Gata4KO male liver and isolated hepatocytes. However, the inflammatory status in the Gata4KO male liver was similar to the control liver. Importantly, lower activation of AKT signaling in the liver, which is consistent with de-sensitized insulin signaling in isolated hepatocytes, was found in the Gata4KO male. In summary, our data demonstrated that loss of Gata4 in hepatocytes promoted NAFLD progression in male mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Hepatócitos/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Apoptose , Metionina/metabolismo , Colina/farmacologia , Camundongos Knockout , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo
6.
Metabolites ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36355117

RESUMO

The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.

7.
Front Biosci (Landmark Ed) ; 26(11): 965-976, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34856745

RESUMO

Introduction: Hyperglycemic conditions achieved during pregnancy have been shown to have detrimental effects to fetal development and increase the prevalence of childhood comorbidities. However, the mechanisms in which diabetic pregnancies affect placental development and subsequently contribute to adverse health effects on the mother and offspring remain unclear. Research design and methods: Streptozotocin was used to induce gestational diabetes in mice. In this model, hyperglycemia was established at embryonic day 3.5 (E3.5). Pregnancy mass was collected at E10.5, E12.5, E14.5, and E16.5 for different assessments. Results: Both placental and embryonic weights were found to be significantly elevated at E16.5. At E14.5, a significantly larger junctional zone with increased number of glycogen trophoblasts was found in the placentas from hyperglycemic pregnancies (HG group) compared to the placentas from normoglycemic pregnancies (NG group). Importantly, the HG placenta exhibited decreased trophoblast giant cell (TGC) association and TUNEL+ cells, and increased expression of α-SMA on the spiral artery, suggesting arterial remodeling was impacted. Moreover, the interhemal membrane of the labyrinth layer, was found to be thicker in the HG placentas. Furthermore, hyperglycemia resulted in more offspring congenital defects, which were associated with a thicker interhemal membrane. Conclusions: Together, these results suggest that gestational diabetes perturbs proper placental development and function, specifically spiral artery remodeling and angiogenesis, thereby negatively impacting embryonic development.


Assuntos
Hiperglicemia , Placenta , Animais , Artérias , Feminino , Camundongos , Placentação , Gravidez , Trofoblastos
8.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165955, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877749

RESUMO

While the correlation between diabetes during pregnancy and birth defects is well-established, how hyperglycemia causes developmental abnormalities remains unclear. In this study, we developed a novel "hyperglycemic" chicken embryonic model by administrating various doses of glucose to fertilized eggs at embryonic stages HH16 or HH24. When the embryos were collected at HH35, the LD50 was 1.57 g/Kg under HH16 treatment and 0.93 g/Kg under HH24 treatment, indicating that "hyperglycemic" environments can be lethal for the embryos. When exposed to a dose equal to or higher than 1 g/Kg glucose at HH16 or HH24, more than 40% of the surviving chicken embryos displayed heart defects and/or limb defects. The limb defects were associated with proliferation defects of both the wing and leg buds indicated by reduced numbers of p-H3S10 labeled cells. These limb defects were also associated with ectopic apoptosis in the leg bud and expression changes of key apoptotic genes. Furthermore, glucose treatment induced decreased expression of genes involved in Shh-signaling, chondrogenesis, and digit patterning in the limb bud. In summary, our data demonstrated that a high-glucose environment induces congenital heart and limb defects associated with disrupted cell proliferation and apoptosis, possibly through depressed Shh-signaling.


Assuntos
Apoptose , Hiperglicemia/patologia , Deformidades Congênitas dos Membros/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Galinhas , Modelos Animais de Doenças , Glucose/administração & dosagem , Glucose/farmacologia , Hiperglicemia/induzido quimicamente , Hiperglicemia/genética , Deformidades Congênitas dos Membros/induzido quimicamente , Deformidades Congênitas dos Membros/genética
9.
J Nutr Biochem ; 86: 108495, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32949717

RESUMO

Novel progress has been made to understand the adverse pathophysiology in the pancreas of offspring exposed to overnutrition in utero. Our study is the first to evaluate whether the adverse effects of maternal overnutrition on offspring ß-cell function are reversible or preventable through preconception maternal diet interventions. Herein, offspring mice were exposed in utero to one of the following: maternal normal-fat diet (NF group), maternal high-fat diet (HF group) or maternal diet transition from an HF to NF diet 9 weeks before pregnancy (H9N group). Offspring mice were subjected to postweaning HF diet for 12 weeks. HF offspring, but not H9N, displayed glucose intolerance and insulin resistance. HF male offspring had enlarged islet ß-cells with reduced ß-cell density, whereas, H9N male offspring did not show these changes. Co-immunofluorescent (Co-IF) staining of glucose transporter 2 (Glut2) and insulin (Ins) revealed significantly more Glut2+Ins- cells, indicative of insulin degranulation, in HF male offspring but not H9N. In addition, Co-IF of insulin and p-H3S10 indicated that ß cells of HF male offspring, but not H9N, had proliferation defects likely due to inhibited protein kinase B (AKT) phosphorylation. In summary, our study demonstrates that maternal H9N diet effectively prevents functional deterioration of ß cells seen in HF male offspring by avoiding ß-cell proliferation defects and degranulation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Células Secretoras de Insulina/patologia , Fenômenos Fisiológicos da Nutrição Materna , Animais , Proliferação de Células , Feminino , Intolerância à Glucose , Homeostase , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Obesidade/metabolismo , Pâncreas/metabolismo , Fenótipo , Gravidez , Prenhez , Efeitos Tardios da Exposição Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA