Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Small ; 20(1): e2304776, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658502

RESUMO

Efficient artificial photosynthesis of disulfide bonds holds promises to facilitate reverse decoding of genetic codes and deciphering the secrets of protein multilevel folding, as well as the development of life science and advanced functional materials. However, the incumbent synthesis strategies encounter separation challenges arising from leaving groups in the ─S─S─ coupling reaction. In this study, according to the reaction mechanism of free-radical-triggered ─S─S─ coupling, light-driven heterojunction functional photocatalysts are tailored and constructed, enabling them to efficiently generate free radicals and trigger the coupling reaction. Specifically, perovskites and covalent organic frameworks (COFs) are screened out as target materials due to their superior light-harvesting and photoelectronic properties, as well as flexible and tunable band structure. The in situ assembled Z-scheme heterojunction MAPB-M-COF (MAPbBr3 = MAPB, MA+ = CH3 NH2 + ) demonstrates a perfect trade-off between quantum efficiency and redox chemical potential via band engineering management. The MAPB-M-COF achieves a 100% ─S─S─ coupling yield with a record photoquantum efficiency of 11.50% and outstanding cycling stability, rivaling all the incumbent similar reaction systems. It highlights the effectiveness and superiority of application-oriented band engineering management in designing efficient multifunctional photocatalysts. This study demonstrates a concept-to-proof research methodology for the development of various integrated heterojunction semiconductors for light-driven chemical reaction and energy conversion.

2.
Small ; : e2402459, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751061

RESUMO

The electrocatalytic conversion of inert CO2 to value-added chemical fuels powered by renewable energy is one of the benchmark approaches to address excessive carbon emissions and achieve carbon-neutral energy restructuring. However, the adsorption/activation of supersymmetric CO2 is facing insurmountable challenges that constrain its industrial-scale applications. Here, this theory-guided study confronts these challenges by leveraging the synergies of bimetallic sites and defect engineering, where pyrochlore-type semiconductor A2B2O7 is employed as research platform and the conversion of CO2-to-HCOOH as the model reaction. Specifically, defect engineering intensified greatly the chemisorption-induced CO2 polarization via the bimetallic coordination, thermodynamically beneficial to the HCOOH production via the *HCO2 intermediate. The optimal V-BSO-430 electrocatalyst with abundant surface oxygen vacancies achieved a superior HCOOH yield of 116.7 mmol h-1 cm-2 at -1.2 VRHE, rivalling the incumbent similar reaction systems. Furthermore, the unique catalytic unit featured with a Bi1-Sn-Bi2 triangular structure, which is reconstructed by defect engineering, and altered the pathway of CO2 adsorption and activation to allow the preferential affinity of the suspended O atom in *HCO2 to H. As a result, V-BSO-430 gave an impressive FEHCOOH of 93% at -1.0 VRHE. This study held promises for inspiring the exploration of bimetallic materials from the massive semiconductor database.

3.
Angew Chem Int Ed Engl ; : e202410397, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896110

RESUMO

The valorization of native lignin to functionalized aromatic compounds under visible light is appealing yet challenging. In this communication, colloidal mercaptoalkanoic acid capped ultrathin ZnIn2S4 (ZIS) microbelts was successfully fabricated, which was used as a superior catalyst for depolymerization of native lignin in birch woodmeal under visible light, with an optimum yield of 28.8 wt% to functionalized aromatic monomers achieved in 8 h. The capped mercaptoalkanoic acid not only enables a solvent modulated reversible interchange of ZIS between the colloidal state for efficient reaction and the aggregated state for facile separation, but also serves as a precursor for light initiated generation of reactive thiyl radical for highly selective cleavage of ß-O-4 bond in native lignin. This work provides a green and efficient strategy for the depolymerization of native lignin to functionalized aromatic monomers under mild conditions, which involves a new mechanism for the cleavage of ß-O-4 bonds in native lignin. The capability of cleavage of ß-O-4 bonds in native lignin by photogenerated thiyl radicals also demonstrates the great potential of using photogenerated thiyl radicals in organics transformations.

4.
J Am Chem Soc ; 145(10): 5769-5777, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863033

RESUMO

A series of novel surface Ru-H bipyridine complexes-grafted TiO2 nanohybrids were for the first time prepared by a combined procedure of surface organometallic chemistry with post-synthetic ligand exchange for photocatalytic conversion of CO2 to CH4 with H2 as electron and proton donors under visible light irradiation. The selectivity toward CH4 increased to 93.4% by the ligand exchange of 4,4'-dimethyl-2,2'-bipyridine (4,4'-bpy) with the surface cyclopentadienyl (Cp)-RuH complex and the CO2 methanation activity was enhanced by 4.4-fold. An impressive rate of 241.2 µL·g-1·h-1 for CH4 production was achieved over the optimal photocatalyst. The femtosecond transient IR absorption results demonstrated that the hot electrons were fast injected in 0.9 ps from the photoexcited surface 4,4'-bpy-RuH complex into the conduction band of TiO2 nanoparticles to form a charge-separated state with an average lifetime of ca. 50.0 ns responsible for the CO2 methanation. The spectral characterizations indicated clearly that the formation of CO2•- radicals by single electron reduction of CO2 molecules adsorbed on surface oxygen vacancies of TiO2 nanoparticles was the most critical step for the methanation. Such radical intermediates were inserted into the explored Ru-H bond to generate Ru-OOCH species and finally CH4 and H2O in the presence of H2.

5.
Angew Chem Int Ed Engl ; 60(29): 16009-16018, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33908140

RESUMO

Single-atom metal-insulator-semiconductor (SMIS) heterojunctions based on Sn-doped Fe2 O3 nanorods (SF NRs) were designed by combining atomic deposition of an Al2 O3 overlayer with chemical grafting of a RuOx hole-collector for efficient CO2 -to-syngas conversion. The RuOx -Al2 O3 -SF photoanode with a 3.0 nm thick Al2 O3 overlayer gave a >5-fold-enhanced IPCE value of 52.0 % under 370 nm light irradiation at 1.2 V vs. Ag/AgCl, compared to the bare SF NRs. The dielectric field mediated the charge dynamics at the Al2 O3 /SF NRs interface. Accumulation of long-lived holes on the surface of the SF NRs photoabsorber aids fast tunneling transfer of hot holes to single-atom RuOx species, accelerating the O2 -evolving reaction kinetics. The maximal CO-evolution rate of 265.3 mmol g-1 h-1 was achieved by integration of double SIMS-3 photoanodes with a single-atom Ni-doped graphene CO2 -reduction-catalyst cathode; an overall quantum efficiency of 5.7 % was recorded under 450 nm light irradiation.

6.
Chemistry ; 26(2): 517-523, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31651058

RESUMO

This work reports the preparation of a La2 O3 -modified Pt/TiO2 (Pt/La-TiO2 ) hybrid through an excess-solution impregnation method and its application for CO2 hydrogenation catalysis. The Pt/La-TiO2 catalyst is characterized by XRD, H2 temperature-programmed reduction (TPR), TEM, X-ray photoelectron spectroscopy (XPS), Raman, EPR, and N2 sorption measurements. The Pt/La-TiO2 composite starts to catalyze the CO2 conversion reaction at 220 °C, which is 30 °C lower than the Pt/TiO2 catalyst. The generation of CH4 and CO of Pt/La-TiO2 is 1.6 and 1.4 times greater than that of Pt/TiO2 . The CO2 temperature-programmed desorption (TPD) analysis confirms the strengthened CO2 adsorption on Pt/La-TiO2 . Moreover, the in situ FTIR experiments demonstrate that the enhanced CO2 adsorption of Pt/La-TiO2 facilitates the formation of the active Pt-CO intermediate and subsequently boosts the evolution of CH4 and CO. The cycling tests reveal that Pt/La-TiO2 shows reinforced stability for the CO2 hydrogenation reaction because the La species can prevent Pt nanoparticles (NPs) from sintering. This work may provide some guidance on the development new rare-metal-modified hybrid catalysts for CO2 fixation.

7.
Angew Chem Int Ed Engl ; 58(23): 7718-7722, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30919535

RESUMO

An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2 O, a Ni-SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2 -saturated NaHCO3 solution, and a proton-conducting membrane enabled syngas production from CO2 and H2 O with solar-to-syngas energy-conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h-1 was recorded with a photoanodic N-TiO2 nanorod array for highly stable CO production. The CO-evolution rate reached a maximum of 154.9 mmol g-1 h-1 in the dark compartment of the APS cell. Scanning electrochemical-atomic force microscopy showed the localization of electrons on the single-nickel-atom sites of the Ni-SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.

8.
Chemistry ; 24(69): 18512-18517, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30074283

RESUMO

LaNiO3 /CdS heterojunction photocatalysts are constructed by compositing LaNiO3 nanoparticles with commercially available CdS, and are used for efficient photocatalytic splitting of H2 O with visible light. The LaNiO3 /CdS hybrids are characterized systematically using a series of physicochemical techniques. The photocatalytic activity of the perovskite hybrids is examined by H2 evolution with Na2 S-NaSO3 as the hole scavenger. The optimized LaNiO3 /CdS sample without the assistance of any cocatalyst (e.g., Pt) delivers a high H2 production rate of 74 µmol h-1 (e.g., 3700 µmol h-1 g-1 ), which is substantially superior to the individual LaNiO3 and CdS. Besides, the composite photocatalyst also manifests high stability. The greatly improved H2 production performance of LaNiO3 /CdS is attributed to the facilitated separation and transport of photoinduced charge carriers, as evidenced by photoelectrochemical (PEC) analyses, such as photoluminscence spectroscopy, transient photocurrent responses, and electrochemical impedance spectroscopy. Moreover, a probable photocatalytic mechanism of the H2 evolution reaction is proposed on the basis of the results of the catalysis evaluation and PEC tests.

9.
Phys Chem Chem Phys ; 19(38): 25919-25926, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28929150

RESUMO

Developing efficient alternatives to the widely used Pt cocatalyst in photocatalytic H2O splitting is of great importance in view of large-scale production of clear H2 energy. Herein, we report the facile synthesis of NiCo2S4 and its first use as a highly active and cost-affordable cocatalyst to boost visible light H2 generation with the CdS semiconductor. The synthesized NiCo2S4/CdS composite materials are fully characterized by various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-Vis diffusion reflectance spectroscopy (DRS), and N2 adsorption measurements. With the optimized NiCo2S4/CdS composite sample, a high H2 generation rate of 137 µmol h-1 is obtained under visible light irradiation, which is more than 17 times higher than that of bare CdS material. The results of photoluminescence (PL) spectroscopy, transient photocurrent response and electrochemical impedance spectroscopy demonstrate the remarkably promoted migration and separation of photogenerated charge carriers over the heterostructured NiCo2S4/CdS material, thus leading to obviously enhanced photocatalytic performance. Moreover, a possible mechanism for the photocatalytic H2 evolution reaction is also proposed based on the observed results of activity evaluation and photoelectrochemical measurements.

10.
Phys Chem Chem Phys ; 17(24): 16040-6, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26027655

RESUMO

The work reported herein was the facile preparation of uniform urchin-like NiCo2O4 microspheres, and their use as an efficient and stable cocatalyst for photocatalytic CO2 reduction catalysis. A combined solvothermal-calcination strategy was applied to synthesize the NiCo2O4 material that was systematically characterized by physical and chemical measurements (e.g. SEM, TEM, XRD, XPS, EDX, elemental mapping and N2 physisorption analysis). By cooperation with a visible light photosensitizer, the NiCo2O4 material effectively promoted the deoxygenative reduction of CO2 to CO by more than twenty times under mild reaction conditions. The carbon origin of CO evolution was validated by (13)CO2 isotope tracer experiments. Various reaction parameters were examined and optimized, and a possible reaction mechanism was proposed. Furthermore, the stability and reusability of NiCo2O4 cocatalysts were firmly confirmed.


Assuntos
Dióxido de Carbono/química , Monóxido de Carbono/química , Cobalto/química , Níquel/química , Óxidos/química , Processos Fotoquímicos , Catálise/efeitos da radiação , Microesferas , Oxirredução/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície
11.
J Nanosci Nanotechnol ; 14(3): 2573-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24745265

RESUMO

Pyrochlore W2O6 x H2O were successfully prepared via a facile and rapid hydrothermal process in the presence of fluorinion. It is worth noting that our developed method can efficiently overcome the tedious process in the preparation of nanostructured tungstic oxide in the previous reports. The as-prepared samples have been characterized by XRD, SEM and TEM. Results showed the morphologies of the samples were nanoplate and the thickness of the plate was estimated at about several nanometers. TEM image further revealed that the plates were trigonal-like with equal lengths of about 300 nm. Furthermore the selected area electron diffraction (SAED) pattern taken from a single nanoplate indicated that the nanoplates were the single crystals with a preferential growth direction along the [011] direction. The effect of the additive ions on the formation has also been discussed. It was found that the fluorinion played a key role in the formation of W2O6 x H2O nanoplates. It is hoped that our work could provide a new insight into the facile and rapid preparation of metal oxide nanomaterials.


Assuntos
Flúor/química , Nanoestruturas/química , Tungstênio/química , Cristalização , Elétrons , Íons , Nanopartículas Metálicas/química , Metais/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Óxidos/química , Pressão , Temperatura , Água/química , Difração de Raios X
12.
Angew Chem Int Ed Engl ; 53(4): 1034-8, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24339134

RESUMO

Metal-organic frameworks (MOFs) have shown great promise for CO2 capture and storage. However, the operation of chemical redox functions of framework substances and organic CO2 -trapping entities which are spatially linked together to catalyze CO2 conversion has had much less attention. Reported herein is a cobalt-containing zeolitic imidazolate framework (Co-ZIF-9) which serves as a robust MOF cocatalyst to reduce CO2 by cooperating with a ruthenium-based photosensitizer. The catalytic turnover number of Co-ZIF-9 was about 450 within 2.5 hours under mild reaction conditions, while still keeping its original reactivity during prolonged operation.

13.
J Colloid Interface Sci ; 664: 63-73, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460385

RESUMO

Photocatalytic oxidative coupling of amines is considered a mild, efficient, and sustainable strategy for the synthesis of imines. As a versatile organic semiconductor, conjugated microporous polymers (CMPs) are attractive in photocatalysis areas due to the diversity of their polymeric monomers. Herein, we report that in addition to the design of monomers, size-confined polymerization is also a feasible strategy to modulate the structure and photocatalysis properties of CMPs. We adopted dibromopyrazine as polymeric units to prepare pyrazine-involved hollow spherical CMPs (H-PyB) using a template method and successfully performed size-confined polymerization of hollow samples by resizing the templates. Interestingly, the small confinement space induced the formation of CMPs with better conjugate extensibility, resulting in enhanced conductivity, narrowed bandgaps, improved photoelectric performance, etc. As a result, small-sized H-PyB CMPs had superior activity for the photocatalytic oxidation of amines. Particularly, the smallest H-PyB CMPs that we designed in the present work exhibited excellent performance for the photocatalytic coupling oxidation of amines. When using benzylamine as a model substrate, the yield of the corresponding imine reached âˆ¼ 113 mmol·g-1·h-1, accompanied by almost 100 % selectivity. Furthermore, the as-designed confined samples exhibited stable photocatalytic activity as well as good applicability for oxidative coupling of different amines. This work not merely reports a kind of CMP photocatalysts with excellent performance for the imine coupling oxidation but also proposes an alternative strategy for constructing high-performance organic photocatalysts by size-confined synthesis.

14.
Dalton Trans ; 52(37): 13129-13136, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37655690

RESUMO

Carbon quantum dot (CQD)-decorated CdS nanocomposites were successfully fabricated via the self-assembly of CdS in the presence of preformed CQDs and were found to be efficient photocatalysts for the hydrogenation of nitrobenzene under visible light. Due to the presence of the frustrated Lewis acid-base pairs (FLPs) in their structure, CQDs act as an efficient catalyst to promote the proton-coupled hydrogenation of nitrobenzene over CQDs/CdS nanocomposites. Controllable and chemoselective hydrogenation of nitrobenzene to produce aniline, azoxybenzene, azobenzene and hydrazobenzene can be realized over CQDs/CdS via simply regulating the reaction medium including the hydrogen source, the solvent and the alkalinity. This study provides a highly efficient and economical photocatalytic system for the controllable and chemoselective hydrogenation of nitrobenzene under visible light. This work also highlights the great potential of semiconductor-based photocatalysis in light-initiated organic syntheses.

15.
J Colloid Interface Sci ; 642: 648-657, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030201

RESUMO

Conjugated microporous polymers (CMPs) have been considered a type of promising visible-light-driven, organic photocatalysts. However, apart from designing high-performance CMPs from a molecular perspective, little attention is paid to improving the photocatalytic properties of these polymers through macrostructural regulation. Herein, we prepared a kind of hollow spherical CMPs involving carbazole monomers and studied their performance on the selective photocatalytic oxidation of benzyl alcohol under visible light irradiation. The results demonstrate that the introduction of a hollow spherical structure improves the physicochemical properties of the as-designed CMPs, including the specific surface areas, optoelectronic characteristics, as well as photocatalytic performance, etc. In particular, the hollow CMPs can more effectively oxidize benzyl alcohol compared to pristine ones under blue light illumination, and produce >1 mmol of benzaldehyde in 4.5 h with a yield of up to 9 mmol·g-1·h-1, which is almost 5 times higher than that of the pristine ones. Furthermore, such hollow architecture has a similar enhanced effect on the oxidation of some other aromatic alcohols. This work shows that the deliberate construction of specific macrostructures can better arouse the photocatalytic activity of the as-designed CMPs, which will contribute to the further use of these organic polymer semiconductors in photocatalysis areas.

16.
ACS Appl Mater Interfaces ; 15(20): 24494-24503, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163238

RESUMO

Light-driven valorization conversion of CO2 is an encouraging carbon-negative pathway that shifts energy-reliance from fossil fuels to renewables. Herein, a hierarchical urchin-like hollow-TiO2@CdS/ZnS (HTO@CdS/ZnS) Z-scheme hybrid synthesized by an in situ self-assembly strategy presents superior photocatalytic CO2-to-CO activity with nearly 100% selectivity. Specifically, benefitting from the reasonable architectural and interface design, as well as surface modification, this benchmarked visible-light-driven photocatalyst achieves a CO output of 62.2 µmol·h-1 and a record apparent quantum yield of 6.54% with the Co(bpy)32+ (bpy = 2,2'-bipyridine) cocatalyst. It rivals all the incumbent selective photocatalytic conversion of CO2 to CO in the CH3CN/H2O/TEOA reaction systems. Specifically, the addition of HTO and stabilized ZnS enables the photocatalyst to effectively upgrade optical and electrical performances, contributing to efficient light-harvesting and photogenerated carrier separation, as well as interfacial charge transfer. The tremendous enhancement of photocatalytic performance reveals the superiority of the Z-scheme heterojunction assembled from HTO and CdS/ZnS, featuring the inner electric field derived from the band bending of HTO@CdS/ZnS make CdS resistant to photocorrosion. This study allows access to inspire studies on rationally modeling and constructing diverse heterostructures for the storage and conversion of renewables and chemicals.

17.
Chemphyschem ; 13(6): 1542-50, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22407673

RESUMO

The electronic structure and photoactivation process in N-doped TiO(2) is investigated. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electron paramagnetic resonance (EPR) are employed to monitor the change of optical absorption ability and the formation of N species and defects in the heat- and photoinduced N-doped TiO(2) catalyst. Under thermal treatment below 573 K in vacuum, no nitrogen dopant is removed from the doped samples but oxygen vacancies and Ti(3+) states are formed to enhance the optical absorption in the visible-light region, especially at wavelengths above 500 nm with increasing temperature. In the photoactivation processes of N-doped TiO(2), the DRS absorption and PL emission in the visible spectral region of 450-700 nm increase with prolonged irradiation time. The EPR results reveal that paramagnetic nitrogen species (N(s)·, oxygen vacancies with one electron (V(o)·), and Ti(3+) ions are produced with light irradiation and the intensity of N(s)· species is dependent on the excitation light wavelength and power. The combined characterization results confirm that the energy level of doped N species is localized above the valence band of TiO(2) corresponding to the main absorption band at 410 nm of N-doped TiO(2), but oxygen vacancies and Ti(3+) states as defects contribute to the visible-light absorption above 500 nm in the overall absorption of the doped samples. Thus, a detailed picture of the electronic structure of N-doped TiO(2) is proposed and discussed. On the other hand, the transfer of charge carriers between nitrogen species and defects is reversible on the catalyst surface. The presence of oxygen-vacancy-related defects leads to quenching of paramagnetic N(s)· species but they stabilize the active nitrogen species N(s)(-).

18.
Phys Chem Chem Phys ; 14(4): 1455-62, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22159039

RESUMO

Semiconducting carbon nitride materials were successfully prepared via a thermal poly-condensation of dicyandiamide as a precursor at >500 °C. The resulting materials were investigated as metal-free catalysts for the activation of H(2)O(2) with visible light under mild conditions, using the decomposition of Rhodamine B (RhB) in aqueous solution as a model reaction. Results revealed that carbon nitride catalysts can activate H(2)O(2) to generate reactive oxy-radicals under visible light irradiation without employment of any metal additives, leading to the mineralization of the dye. Factors affecting the degradation of organic compounds are pH values and the concentration of H(2)O(2). Recycling of the catalyst indicated no obvious deactivation during the entire catalytic reaction, indicating good (photo)chemical stability of metal-free polymeric carbon nitride photocatalysts for environmental purification. This study demonstrated a promising approach for the activation of green oxidant, hydrogen peroxide, by the newly-developed polymer photocatalysts for environmental remediation and oxidation catalysis.

19.
Angew Chem Int Ed Engl ; 51(14): 3364-7, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22359408

RESUMO

Let your light shine: the photocatalytic reduction of carbon dioxide to the formate anion under visible light irradiation is for the first time realized over a photoactive Ti-containing metal-organic framework, NH(2)-MIL-125(Ti), which is fabricated by a facile substitution of ligands in the UV-responsive MIL-125(Ti) material.

20.
Nanoscale ; 13(43): 18070-18076, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34677567

RESUMO

Exploring affordable cocatalysts with high performance for boosting charge separation and CO2 activation is an effective strategy to reinforce CO2 photoreduction efficiency. Herein, well-defined Co9S8 cages are exploited as a nonprecious promoter for visible-light CO2 reduction. The Co9S8 cages are prepared via a multistep strategy with ZIF-67 particles as the precursor and fully characterized by physicochemical techniques. The hollow Co9S8 cocatalyst with a high surface area and profuse catalytically active centers is discovered to accelerate separation and transfer of light-induced charges, and strengthen concentration and activation of CO2 molecules. In a hybrid photosensitized system, these Co9S8 cages efficiently promote the deoxygenative reduction of CO2 to generate CO, with a high yield rate of 35 µmol h-1 (i.e., 35 mmol h-1 g-1). Besides, this cocatalyst is also of high stability for the CO2 photoreduction reaction. Density functional theory (DFT) calculations reveal that the Ru(bpy)32+ photosensitizer is strongly absorbed on the Co9S8 (311) surface through forming four Co-C bonds, which can serve as the "bridges" to ensure quick electron transfer from the excited photosensitiser to the active Co9S8 cocatalyst, thus promoting the separation of photoexcited charges for ehannced CO2 reduction performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA