Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 141(8): 904-916, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36201743

RESUMO

Burkitt lymphoma (BL) accounts for most pediatric non-Hodgkin lymphomas, being less common but significantly more lethal when diagnosed in adults. Much of the knowledge of the genetics of BL thus far has originated from the study of pediatric BL (pBL), leaving its relationship to adult BL (aBL) and other adult lymphomas not fully explored. We sought to more thoroughly identify the somatic changes that underlie lymphomagenesis in aBL and any molecular features that associate with clinical disparities within and between pBL and aBL. Through comprehensive whole-genome sequencing of 230 BL and 295 diffuse large B-cell lymphoma (DLBCL) tumors, we identified additional significantly mutated genes, including more genetic features that associate with tumor Epstein-Barr virus status, and unraveled new distinct subgroupings within BL and DLBCL with 3 predominantly comprising BLs: DGG-BL (DDX3X, GNA13, and GNAI2), IC-BL (ID3 and CCND3), and Q53-BL (quiet TP53). Each BL subgroup is characterized by combinations of common driver and noncoding mutations caused by aberrant somatic hypermutation. The largest subgroups of BL cases, IC-BL and DGG-BL, are further characterized by distinct biological and gene expression differences. IC-BL and DGG-BL and their prototypical genetic features (ID3 and TP53) had significant associations with patient outcomes that were different among aBL and pBL cohorts. These findings highlight shared pathogenesis between aBL and pBL, and establish genetic subtypes within BL that serve to delineate tumors with distinct molecular features, providing a new framework for epidemiologic, diagnostic, and therapeutic strategies.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Linfoma Difuso de Grandes Células B , Criança , Humanos , Adulto , Linfoma de Burkitt/patologia , Herpesvirus Humano 4 , Linfoma Difuso de Grandes Células B/patologia , Mutação
2.
Cancer ; 130(6): 985-994, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37962072

RESUMO

BACKGROUND: Although immunotherapy has emerged as a therapeutic strategy for many cancers, there are limited studies establishing the safety and efficacy in people living with HIV (PLWH) and cancer. METHODS: PLWH and solid tumors or Kaposi sarcoma (KS) receiving antiretroviral therapy and a suppressed HIV viral load received nivolumab at 3 mg/kg every 2 weeks, in two dose deescalation cohorts stratified by CD4 count (stratum 1: CD4 count > 200/µL and stratum 2: CD4 count 100-199/µL). An expansion cohort of 24 participants with a CD4 count > 200/µL was then enrolled. RESULTS: A total of 36 PLWH received nivolumab, including 15 with KS and 21 with a variety of other solid tumors. None of the first 12 participants had dose-limiting toxicity in both CD4 strata, and five patients (14%) overall had grade 3 or higher immune related adverse events. Objective partial response occurred in nine PLWH and cancer (25%), including in six of 15 with KS (40%; 95% CI, 16.3-64.7). The median duration of response was 9.0 months overall and 12.5 months in KS. Responses were observed regardless of PDL1 expression. There were no significant changes in CD4 count or HIV viral load. CONCLUSIONS: Nivolumab has a safety profile in PLWH similar to HIV-negative subjects with cancer, and also efficacy in KS. Plasma HIV remained suppressed and CD4 counts remained stable during treatment and antiretroviral therapy, indicating no adverse impact on immune function. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02408861.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Sarcoma de Kaposi , Humanos , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Nivolumabe/efeitos adversos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Sarcoma de Kaposi/tratamento farmacológico , Contagem de Linfócito CD4 , Carga Viral
3.
PLoS Pathog ; 18(11): e1010990, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36417478

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr (EBV) are gammaherpesviruses associated with multiple human malignancies. KSHV is the etiological agent of Kaposi's Sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). EBV is associated with Burkitt's lymphoma (BL), Hodgkin's lymphoma (HL), nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). KSHV and EBV establish life-long latency in the human host with intermittent periods of lytic reactivation. Here, we identified a cellular factor named transforming growth factor-beta regulator 4 (TBRG4) that plays a role in the gammaherpesvirus lifecycle. We find that TBRG4, a protein that is localized to the mitochondria, can regulate lytic reactivation from latency of both KSHV and EBV. Knockdown of TBRG4 in cells latently infected with KSHV or EBV induced viral lytic gene transcription and replication. TBRG4 deficiency causes mitochondrial stress and increases reactive oxygen species (ROS) production. Treatment with a ROS scavenger decreased viral reactivation from latency in TBRG4-depleted cells. These data suggest that TBRG4 serves as a cellular repressor of KSHV and EBV reactivation through the regulation of ROS production.


Assuntos
Herpesvirus Humano 4 , Herpesvirus Humano 8 , Proteínas Mitocondriais , Latência Viral , Humanos , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 43(2): 175-191, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36453273

RESUMO

HIV infection has transitioned from an acute, fatal disease to a chronic one managed by antiretroviral therapy. Thus, the aging population of people living with HIV (PLWH) continues to expand. HIV infection results in a dysregulated immune system, wherein CD4+ T cells are depleted, particularly in the gastrointestinal tract, disrupting the gut epithelial barrier. Long-term HIV infection is associated with chronic inflammation through potentially direct mechanisms caused by viral replication or exposure to viral proteins and indirect mechanisms resulting from increased translocation of microbial products from the intestine or exposure to antiretroviral therapy. Chronic inflammation (as marked by IL [interleukin]-6 and CRP [C-reactive protein]) in PLWH promotes endothelial cell dysfunction and atherosclerosis. PLWH show significantly increased rates of cardiovascular disease, such as myocardial infarction (risk ratio, 1.79 [95% CI, 1.54-2.08]) and stroke (risk ratio, 2.56 [95% CI, 1.43-4.61]). In addition, PLWH have increased levels of the coagulation biomarker D-dimer and have a two to ten-fold increased risk of venous thromboembolism compared with the general population. Several small clinical trials analyzed the effect of different antithrombotic agents on platelet activation, coagulation, inflammation, and immune cell activation. Although some markers for coagulation were reduced, most agents failed to reduce inflammatory markers in PLWH. More studies are needed to understand the underlying mechanisms driving inflammation in PLWH to create better therapies for lowering chronic inflammation in PLWH. Such therapies can potentially reduce atherosclerosis, cardiovascular disease, and thrombosis rates in PLWH and thus overall mortality in this population.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Infecções por HIV , Trombose , Humanos , Idoso , Infecções por HIV/complicações , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Inflamação/complicações , Trombose/etiologia , Trombose/complicações , Aterosclerose/epidemiologia , Aterosclerose/complicações
5.
BMC Bioinformatics ; 24(1): 256, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330471

RESUMO

BACKGROUND: Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. RESULTS: We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. CONCLUSIONS: This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson.


Assuntos
RNA , Análise de Célula Única , Análise de Sequência de RNA/métodos , Distribuição de Poisson , Análise de Célula Única/métodos , Análise por Conglomerados , RNA/genética , Perfilação da Expressão Gênica/métodos
6.
Int J Cancer ; 153(12): 2082-2092, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37602960

RESUMO

Kaposi sarcoma (KS) is the most common cancer in people living with HIV (PLWH) in many countries where KS-associated herpesvirus is endemic. Treatment has changed little in 20 years, but the disease presentation has. This prospective cohort study enrolled 122 human immunodeficiency virus (HIV) positive KS patients between 2017 and 2019 in Malawi. Participants were treated with bleomycin, vincristine and combination antiretroviral therapy, the local standard of care. One-year overall survival was 61%, and progression-free survival was 58%. The 48-week complete response rate was 35%. RNAseq (n = 78) differentiated two types of KS lesions, those with marked endothelial characteristics and those enriched in inflammatory transcripts. This suggests that different KS lesions are in different disease states consistent with the known heterogeneous clinical response to treatment. In contrast to earlier cohorts, the plasma HIV viral load of KS patients in our study was highly variable. A total of 25% of participants had no detectable HIV; all had detectable KSHV viral load. Our study affirms that many KS cases today develop in PLWH with well-controlled HIV infection and that different KS lesions have differing molecular compositions. Further studies are needed to develop predictive biomarkers for this disease.


Assuntos
Infecções por HIV , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Sarcoma de Kaposi/complicações , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , HIV , Estudos Prospectivos , Herpesvirus Humano 8/fisiologia
7.
PLoS Pathog ; 17(1): e1009033, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411764

RESUMO

The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Vírus de RNA/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Coronavirus/genética , Coronavirus/metabolismo , Ebolavirus/genética , Ebolavirus/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Fases de Leitura Aberta , Vírus de RNA/genética , Proteína Supressora de Tumor p53/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo
8.
J Med Virol ; 95(5): e28773, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212317

RESUMO

This review will provide an overview of the notion that Kaposi sarcoma (KS) is a disease that manifests under diverse and divergent circumstances. We begin with a historical introduction of KS and KS-associated herpesvirus (KSHV), highlight the diversity of clinical presentations of KS, summarize what we know about the cell of origin for this tumor, explore KSHV viral load as a potential biomarker for acute KSHV infections and KS-associated complications, and discuss immune modulators that impact KSHV infection, KSHV persistence, and KS disease.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Carga Viral
9.
J Virol ; 95(23): e0145921, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523970

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) is a carcinogenic double-stranded DNA virus and the etiological agent of Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). To prevent premature apoptosis and support its replication cycle, KSHV expresses a series of open reading frames (ORFs) that regulate signaling by the p53 tumor suppressor protein. Here, we describe a novel viral inhibitor of p53 encoded by KSHV ORF45 and identify its mechanism of action. ORF45 binds to p53 and prevents its interactions with USP7, a p53 deubiquitinase. This results in decreased p53 accumulation, localization of p53 to the cytoplasm, and diminished transcriptional activity. IMPORTANCE Unlike in other cancers, the tumor suppressor protein p53 is rarely mutated in Kaposi sarcoma (KS). Rather, Kaposi sarcoma-associated herpesvirus (KSHV) inactivates p53 through multiple viral proteins. One possible therapeutic approach to KS is the activation of p53, which would result in apoptosis and tumor regression. In this regard, it is important to understand all the mechanisms used by KSHV to modulate p53 signaling. This work describes a novel inhibitor of p53 signaling and a potential drug target, ORF45, and identifies the mechanisms of its action.


Assuntos
Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Fases de Leitura Aberta , Proteína Supressora de Tumor p53/metabolismo , Hiperplasia do Linfonodo Gigante , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Humanos , Linfoma de Efusão Primária/virologia , Sarcoma de Kaposi/virologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Proteínas Virais/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(33): 16541-16550, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346082

RESUMO

Non-Hodgkin lymphomas (NHLs) make up the majority of lymphoma diagnoses and represent a very diverse set of malignancies. We sought to identify kinases uniquely up-regulated in different NHL subtypes. Using multiplexed inhibitor bead-mass spectrometry (MIB/MS), we found Tyro3 was uniquely up-regulated and important for cell survival in primary effusion lymphoma (PEL), which is a viral lymphoma infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Tyro3 was also highly expressed in PEL cell lines as well as in primary PEL exudates. Based on this discovery, we developed an inhibitor against Tyro3 named UNC3810A, which hindered cell growth in PEL, but not in other NHL subtypes where Tyro3 was not highly expressed. UNC3810A also significantly inhibited tumor progression in a PEL xenograft mouse model that was not seen in a non-PEL NHL model. Taken together, our data suggest Tyro3 is a therapeutic target for PEL.


Assuntos
Linfoma não Hodgkin/enzimologia , Linfoma de Efusão Primária/enzimologia , Terapia de Alvo Molecular , Proteoma/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
Clin Infect Dis ; 73(7): e1973-e1981, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677480

RESUMO

BACKGROUND: Antibodies to programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) may perturb human immunodeficiency virus (HIV) persistence during antiretroviral therapy (ART) by reversing HIV latency and/or boosting HIV-specific immunity, leading to clearance of infected cells. We tested this hypothesis in a clinical trial of anti-PD-1 alone or in combination with anti-CTLA-4 in people living with HIV (PLWH) and cancer. METHODS: This was a substudy of the AIDS Malignancy Consortium 095 Study. ART-suppressed PLWH with advanced malignancies were assigned to nivolumab (anti-PD-1) with or without ipilimumab (anti-CTLA-4). In samples obtained preinfusion and 1 and 7 days after the first and fourth doses of immune checkpoint blockade (ICB), we quantified cell-associated unspliced (CA-US) HIV RNA and HIV DNA. Plasma HIV RNA was quantified during the first treatment cycle. Quantitative viral outgrowth assay (QVOA) to estimate the frequency of replication-competent HIV was performed before and after ICB for participants with samples available. RESULTS: Of 40 participants, 33 received nivolumab and 7 nivolumab plus ipilimumab. Whereas CA-US HIV RNA did not change with nivolumab monotherapy, we detected a median 1.44-fold increase (interquartile range, 1.16-1.89) after the first dose of nivolumab and ipilimumab combination therapy (P = .031). There was no decrease in the frequency of cells containing replication-competent HIV, but in the 2 individuals on combination ICB for whom we had longitudinal QVOA, we detected decreases of 97% and 64% compared to baseline. CONCLUSIONS: Anti-PD-1 alone showed no effect on HIV latency or the latent HIV reservoir, but the combination of anti-PD-1 and anti-CTL-4 induced a modest increase in CA-US HIV RNA and may potentially eliminate cells containing replication-competent HIV. CLINICAL TRIALS REGISTRATION: NCT02408861.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Neoplasias , Antígeno CTLA-4 , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Receptor de Morte Celular Programada 1 , Latência Viral
12.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161170

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) is necessary but not sufficient for primary effusion lymphoma (PEL) development. Alterations in cellular signaling pathways are also a characteristic of PEL. Other B cell lymphomas have acquired an oncogenic mutation in the myeloid differentiation primary response 88 (MYD88) gene. The MYD88 L265P mutant results in the activation of interleukin-1 receptor associated kinase (IRAK). To probe IRAK/MYD88 signaling in PEL, we employed CRISPR/Cas9 technology to generate stable deletion clones in BCBL-1Cas9 and BC-1Cas9 cells. To look for off-target effects, we determined the complete exome of the BCBL-1Cas9 and BC-1Cas9 cells. Deletion of either MYD88, IRAK4, or IRAK1 abolished interleukin-1 beta (IL-1ß) signaling; however, we were able to grow stable subclones from each population. Transcriptome sequencing (RNA-seq) analysis of IRAK4 knockout cell lines (IRAK4 KOs) showed that the IRAK pathway induced cellular signals constitutively, independent of IL-1ß stimulation, which was abrogated by deletion of IRAK4. Transient complementation with IRAK1 increased NF-κB activity in MYD88 KO, IRAK1 KO, and IRAK4 KO cells even in the absence of IL-1ß. IL-10, a hallmark of PEL, was dependent on the IRAK pathway, as IRAK4 KOs showed reduced IL-10 levels. We surmise that, unlike B cell receptor (BCR) signaling, MYD88/IRAK signaling is constitutively active in PEL, but that under cell culture conditions, PEL rapidly became independent of this pathway.IMPORTANCE One hundred percent of primary effusion lymphoma (PEL) cases are associated with Kaposi sarcoma-associated herpesvirus (KSHV). PEL cell lines, such as BCBL-1, are the workhorse for understanding this human oncovirus and the host pathways that KSHV dysregulates. Understanding their function is important for developing new therapies as well as identifying high-risk patient groups. The myeloid differentiation primary response 88 (MYD88)/interleukin-1 receptor associated kinase (IRAK) pathway, which has progrowth functions in other B cell lymphomas, has not been fully explored in PEL. By performing CRISPR/Cas9 knockout (KO) studies targeting the IRAK pathway in PEL, we were able to determine that established PEL cell lines can circumvent the loss of IRAK1, IRAK4, and MYD88; however, the deletion clones are deficient in interleukin-10 (IL-10) production. Since IL-10 suppresses T cell function, this suggests that the IRAK pathway may serve a function in vivo and during early-stage development of PEL.


Assuntos
Herpesvirus Humano 8/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/virologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/genética , Linfócitos B , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Herpesvirus Humano 8/fisiologia , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Análise de Sequência , Transcriptoma
13.
PLoS Pathog ; 15(2): e1007536, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716130

RESUMO

Extracellular signaling is a mechanism that higher eukaryotes have evolved to facilitate organismal homeostasis. Recent years have seen an emerging interest in the role of secreted microvesicles, termed extracellular vesicles (EV) or exosomes in this signaling network. EV contents can be modified by the cell in response to stimuli, allowing them to relay information to neighboring cells, influencing their physiology. Here we show that the tumor virus Kaposi's Sarcoma-associated herpesvirus (KSHV) hijacks this signaling pathway to induce cell proliferation, migration, and transcriptome reprogramming in cells not infected with the virus. KSHV-EV activates the canonical MEK/ERK pathway, while not alerting innate immune regulators, allowing the virus to exert these changes without cellular pathogen recognition. Collectively, we propose that KSHV establishes a niche favorable for viral spread and cell transformation through cell-derived vesicles, all while avoiding detection.


Assuntos
Reprogramação Celular/fisiologia , Vesículas Extracelulares/fisiologia , Herpesvirus Humano 8/metabolismo , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Reprogramação Celular/genética , Células Endoteliais/fisiologia , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana , Humanos , Linfoma/genética , Linfoma/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia , Transdução de Sinais , Transcriptoma/genética , Proteínas Virais , Latência Viral
14.
Proc Natl Acad Sci U S A ; 115(48): E11379-E11387, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429324

RESUMO

Primary effusion lymphoma (PEL) is a B cell lymphoma that is always associated with Kaposi's sarcoma-associated herpesvirus (KSHV) and in many cases also with Epstein-Barr virus (EBV); however, the requirement for EBV coinfection is not clear. Here, we demonstrate that adding exogenous EBV to KSHV+ single-positive PEL leads to increased KSHV genome maintenance and KSHV latency-associated nuclear antigen (LANA) expression. To show that EBV was necessary for naturally coinfected PEL, we nucleofected KSHV+/EBV+ PEL cell lines with an EBV-specific CRISPR/Cas9 plasmid to delete EBV and observed a dramatic decrease in cell viability, KSHV genome copy number, and LANA expression. This phenotype was reversed by expressing Epstein-Barr nuclear antigen 1 (EBNA-1) in trans, even though EBNA-1 and LANA do not colocalize in infected cells. This work reveals that EBV EBNA-1 plays an essential role in the pathogenesis of PEL by increasing KSHV viral load and LANA expression.


Assuntos
Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/genética , Linfoma de Efusão Primária/virologia , Sarcoma de Kaposi/virologia , Antígenos Virais/genética , Antígenos Virais/metabolismo , Linhagem Celular , Coinfecção/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
15.
J Infect Dis ; 222(1): 111-120, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32072172

RESUMO

BACKGROUND: Endemic Burkitt lymphoma (eBL) is associated with Epstein-Barr virus (EBV) and Plasmodium falciparum malaria coinfections. However, the role of Kaposi sarcoma-associated herpesvirus (KSHV), also endemic in Africa, has not been evaluated as a cofactor in eBL pathogenesis. METHODS: Multiplexed seroprofiles for EBV, malaria, and KSHV were generated for 266 eBL patients, 78 non-eBL cancers, and 202 healthy children. KSHV and EBV loads were quantified by PCR. RESULTS: KSHV seroprevalence did not differ by study group but was associated with age. Seropositivity, defined by K8.1/LANA or in combination with 5 other KSHV antigens (ORF59, ORF65, ORF61, ORF38, and K5) was associated with antimalarial antibody levels to AMA1 (odds ratio [OR], 2.41, P < .001; OR, 2.07, P < .001) and MSP1 (OR, 2.41, P = .0006; OR, 5.78, P < .001), respectively. KSHV loads did not correlate with antibody levels nor differ across groups but were significantly lower in children with detectable EBV viremia (P = .014). CONCLUSIONS: Although KSHV-EBV dual infection does not increase eBL risk, EBV appears to suppress reactivation of KSHV while malaria exposure is associated with KSHV infection and/or reactivation. Both EBV and malaria should, therefore, be considered as potential effect modifiers for KSHV-associated cancers in sub-Saharan Africa.


Assuntos
Linfoma de Burkitt/etiologia , Linfoma de Burkitt/genética , Infecções por Herpesviridae/etiologia , Infecções por Herpesviridae/genética , Herpesviridae/genética , Sarcoma de Kaposi/complicações , Sarcoma de Kaposi/genética , Adolescente , Fatores Etários , Linfoma de Burkitt/epidemiologia , Linfoma de Burkitt/fisiopatologia , Criança , Pré-Escolar , Coinfecção , Feminino , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/fisiopatologia , Humanos , Lactente , Quênia/epidemiologia , Masculino , Sarcoma de Kaposi/epidemiologia , Sarcoma de Kaposi/fisiopatologia , Estudos Soroepidemiológicos
16.
BMC Genomics ; 21(1): 79, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992194

RESUMO

BACKGROUND: Contamination of reagents and cross contamination across samples is a long-recognized issue in molecular biology laboratories. While often innocuous, contamination can lead to inaccurate results. Cantalupo et al., for example, found HeLa-derived human papillomavirus 18 (H-HPV18) in several of The Cancer Genome Atlas (TCGA) RNA-sequencing samples. This work motivated us to assess a greater number of samples and determine the origin of possible contaminations using viral sequences. To detect viruses with high specificity, we developed the publicly available workflow, VirDetect, that detects virus and laboratory vector sequences in RNA-seq samples. We applied VirDetect to 9143 RNA-seq samples sequenced at one TCGA sequencing center (28/33 cancer types) over 5 years. RESULTS: We confirmed that H-HPV18 was present in many samples and determined that viral transcripts from H-HPV18 significantly co-occurred with those from xenotropic mouse leukemia virus-related virus (XMRV). Using laboratory metadata and viral transcription, we determined that the likely contaminant was a pool of cell lines known as the "common reference", which was sequenced alongside TCGA RNA-seq samples as a control to monitor quality across technology transitions (i.e. microarray to GAII to HiSeq), and to link RNA-seq to previous generation microarrays that standardly used the "common reference". One of the cell lines in the pool was a laboratory isolate of MCF-7, which we discovered was infected with XMRV; another constituent of the pool was likely HeLa cells. CONCLUSIONS: Altogether, this indicates a multi-step contamination process. First, MCF-7 was infected with an XMRV. Second, this infected cell line was added to a pool of cell lines, which contained HeLa. Finally, RNA from this pool of cell lines contaminated several TCGA tumor samples most-likely during library construction. Thus, these human tumors with H-HPV or XMRV reads were likely not infected with H-HPV 18 or XMRV.


Assuntos
Contaminação por DNA , Sequenciamento de Nucleotídeos em Larga Escala/normas , Técnicas de Diagnóstico Molecular/normas , Neoplasias/genética , RNA , Animais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Células HeLa , Humanos , Camundongos , Neoplasias/diagnóstico , Neoplasias/virologia , Filogenia , Software , Fluxo de Trabalho
17.
PLoS Pathog ; 14(9): e1007267, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212584

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of three human malignancies, the endothelial cell cancer Kaposi's sarcoma, and two B cell cancers, Primary Effusion Lymphoma and multicentric Castleman's disease. KSHV has latent and lytic phases of the viral life cycle, and while both contribute to viral pathogenesis, lytic proteins contribute to KSHV-mediated oncogenesis. Reactivation from latency is driven by the KSHV lytic gene transactivator RTA, and RTA transcription is controlled by epigenetic modifications. To identify host chromatin-modifying proteins that are involved in the latent to lytic transition, we screened a panel of inhibitors that target epigenetic regulatory proteins for their ability to stimulate KSHV reactivation. We found several novel regulators of viral reactivation: an inhibitor of Bmi1, PTC-209, two additional histone deacetylase inhibitors, Romidepsin and Panobinostat, and the bromodomain inhibitor (+)-JQ1. All of these compounds stimulate lytic gene expression, viral genome replication, and release of infectious virions. Treatment with Romidepsin, Panobinostat, and PTC-209 induces histone modifications at the RTA promoter, and results in nucleosome depletion at this locus. Finally, silencing Bmi1 induces KSHV reactivation, indicating that Bmi1, a member of the Polycomb repressive complex 1, is critical for maintaining KSHV latency.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Herpesvirus Humano 8/fisiologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Linhagem Celular , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Depsipeptídeos/farmacologia , Epigênese Genética/efeitos dos fármacos , Genoma Viral/efeitos dos fármacos , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidade , Compostos Heterocíclicos com 2 Anéis/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/fisiologia , Panobinostat/farmacologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/fisiologia , Regiões Promotoras Genéticas , Interferência de RNA , Tiazóis/farmacologia , Transativadores/genética , Transativadores/fisiologia , Ativação Viral/efeitos dos fármacos , Ativação Viral/genética , Latência Viral/genética
18.
Clin Infect Dis ; 69(11): 2022-2025, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31102440

RESUMO

We describe 7 human immunodeficiency virus-infected Malawian children with Kaposi sarcoma who met criteria for Kaposi sarcoma herpesvirus (KSHV) inflammatory cytokine syndrome. Each presented with persistent fevers, bulky lymphadenopathy, massive hepatosplenomegaly, and severe cytopenias. Plasma analyses were performed in 2 patients, both demonstrating extreme elevations of KSHV viral load and interleukin 6.


Assuntos
Citocinas/metabolismo , Herpesvirus Humano 8/patogenicidade , Sarcoma de Kaposi/virologia , Criança , Pré-Escolar , Feminino , Infecções por HIV/mortalidade , Infecções por HIV/virologia , Humanos , Interleucina-6/metabolismo , Linfadenopatia/metabolismo , Linfadenopatia/virologia , Malaui , Masculino , Estudos Prospectivos , Estudos Retrospectivos , Sarcoma de Kaposi/metabolismo
19.
Int J Cancer ; 144(1): 110-116, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30204240

RESUMO

Kaposi sarcoma (KS) is among the most common childhood malignancies in central, eastern, and southern Africa. Although its unique clinical features have been established, biological mechanisms related to the causative agent, KS-associated herpes-virus (KSHV), have yet to be explored in children. We performed a prospective observational pilot study to explore associations between KSHV viral load (VL), human interleukin-6 (IL-6) and IL-10 levels, and clinical characteristics of 25 children with KS in Lilongwe, Malawi from June 2013-August 2015. The median age was 6.4 years. Lymphadenopathy was the most common site of KS involvement (64%), followed by skin and oral mucosa (44% each), woody edema (12%), and pulmonary (8%). Baseline samples for plasma KSHV VL, IL-6 and IL-10 analyses were available for 18/25 patients (72%) at time of KS diagnosis. KSHV VL was detectable at baseline in 12/18 (67%) patients, the median baseline IL-6 level was 8.53 pg/mL (range 4.31-28.33), and the median baseline IL-10 level was 19.53 pg/mL (range 6.91-419.69). Seven (39%) patients presented with an IL-6 level > 10 pg/mL (exceeding twice the upper limit of normal). Detectable KSHV VL was significantly associated with lymphadenopathic KS (p = 0.004), while having undetectable KSHV VL was associated with a higher likelihood of presenting with hyperpigmented skin lesions (p = 0.01). Detectable KSHV VL and elevated IL-6 levels are present in a subset of children with KS. Lytic activation of KSHV and associated elevation in KSHV VL may contribute to the unique clinical manifestations of pediatric KS in KSHV-endemic regions of Africa.


Assuntos
Infecções por HIV/metabolismo , Infecções por Herpesviridae/metabolismo , Interleucina-6/metabolismo , Sarcoma de Kaposi/metabolismo , Carga Viral , Adolescente , Criança , Pré-Escolar , Doenças Endêmicas , Feminino , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Humanos , Lactente , Malaui/epidemiologia , Masculino , Projetos Piloto , Estudos Prospectivos , Sarcoma de Kaposi/epidemiologia , Sarcoma de Kaposi/virologia , Ativação Viral/fisiologia
20.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021895

RESUMO

Epstein-Barr virus (EBV) ZEBRA protein activates the EBV lytic cycle. Cellular AP-1 proteins with alanine-to-serine [AP-1(A/S)] substitutions homologous to ZEBRA(S186) assume some functions of EBV ZEBRA. These AP-1(A/S) mutants bind methylated EBV DNA and activate expression of some EBV genes. Here, we compare expression of 67 viral genes induced by ZEBRA versus expression induced by AP-1(A/S) proteins. AP-1(A/S) activated 24 genes to high levels and 15 genes to intermediate levels; activation of 28 genes by AP-1(A/S) was severely impaired. We show that AP-1(A/S) proteins are defective at stimulating viral lytic DNA replication. The impairment of expression of many late genes compared to that of ZEBRA is likely due to the inability of AP-1(A/S) proteins to promote viral DNA replication. However, even in the absence of detectable viral DNA replication, AP-1(A/S) proteins stimulated expression of a subgroup of late genes that encode viral structural proteins and immune modulators. In response to ZEBRA, expression of this subgroup of late genes was inhibited by phosphonoacetic acid (PAA), which is a potent viral replication inhibitor. However, when the lytic cycle was activated by AP-1(A/S), PAA did not reduce expression of this subgroup of late genes. We also provide genetic evidence, using the BMRF1 knockout bacmid, that these genes are true late genes in response to ZEBRA. AP-1(A/S) binds to the promoter region of at least one of these late genes, BDLF3, encoding an immune modulator.IMPORTANCE Mutant c-Jun and c-Fos proteins selectively activate expression of EBV lytic genes, including a subgroup of viral late genes, in the absence of viral DNA replication. These findings indicate that newly synthesized viral DNA is not invariably required for viral late gene expression. While viral DNA replication may be obligatory for late gene expression driven by viral transcription factors, it does not limit the ability of cellular transcription factors to activate expression of some viral late genes. Our results show that expression of all late genes may not be strictly dependent on viral lytic DNA replication. The c-Fos A151S mutation has been identified in a human cancer. c-Fos A151S in combination with wild-type c-Jun activates the EBV lytic cycle. Our data provide proof of principle that mutant cellular transcription factors could cause aberrant regulation of viral lytic cycle gene expression and play important roles in EBV-associated diseases.


Assuntos
Antígenos Virais/genética , DNA Viral/genética , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/genética , Transativadores/genética , Fator de Transcrição AP-1/genética , Proteínas Virais/genética , Substituição de Aminoácidos , Antígenos Virais/imunologia , Antivirais/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , DNA Viral/imunologia , Regulação da Expressão Gênica , Células HEK293 , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/imunologia , Humanos , Linfócitos/imunologia , Linfócitos/virologia , Glicoproteínas de Membrana/imunologia , Mutação , Ácido Fosfonoacéticos/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais , Transativadores/imunologia , Fator de Transcrição AP-1/imunologia , Proteínas Virais/imunologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA