Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 609, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926877

RESUMO

BACKGROUND: Grapevine (Vitis) is one of the world's most valuable fruit crops, but insect herbivory can decrease yields. Understanding insect herbivory resistance is critical to mitigating these losses. Vitis labrusca, a wild North American grapevine species, has been leveraged in breeding programs to generate hybrid grapevines with enhanced abiotic and biotic stress resistance, rendering it a valuable genetic resource for sustainable viticulture. This study assessed the resistance of V. labrusca acc. 'GREM4' and Vitis vinifera cv. 'PN40024' grapevines to Popillia japonica (Japanese beetle) herbivory and identified morphological and genetic adaptations underlying this putative resistance. RESULTS: 'GREM4' displayed greater resistance to beetle herbivory compared to 'PN40024' in both choice and no-choice herbivory assays spanning periods of 30 min to 19 h. 'GREM4' had significantly higher average leaf trichome densities than 'PN40024' and beetles preferred to feed on the side of leaves with fewer trichomes. When leaves from each species that specifically did not differ in trichome densities were fed on by beetles, significantly less leaf area was damaged in 'GREM4' (3.29mm2) compared to 'PN40024' (9.80mm2), suggesting additional factors beyond trichomes contributed to insect herbivory resistance in 'GREM4'. Comparative transcriptomic analyses revealed 'GREM4' exhibited greater constitutive (0 h) expression of defense response and secondary metabolite biosynthesis genes compared to 'PN40024', indicative of heightened constitutive defenses. Upon herbivory, 'GREM4' displayed a greater number of differentially expressed genes (690) compared to 'PN40024' (502), suggesting a broader response. Genes up-regulated in 'GREM4' were enriched in terpene biosynthesis, flavonoid biosynthesis, phytohormone signaling, and disease defense-related functions, likely contributing to heighted insect herbivory defense, while genes differentially expressed in 'PN40024' under herbivory were enriched in xyloglucan, cell wall formation, and calcium ion binding. The majority of genes implicated in insect herbivory defense were orthologs with specific expression patterns in 'GREM4' and 'PN40024', but some paralogous and genome-specific genes also likely contributed to conferring resistance. CONCLUSIONS: Our findings suggest that 'GREM4' insect herbivory resistance was attributed to a combination of factors, including trichomes and unique constitutive and inducible expression of genes implicated in terpene, flavonoid, and phenylpropanoid biosynthesis, as well as pathogen defense.


Assuntos
Besouros , Herbivoria , Tricomas , Vitis , Animais , Vitis/genética , Vitis/fisiologia , Vitis/parasitologia , Tricomas/fisiologia , Tricomas/genética , Besouros/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Regulação da Expressão Gênica de Plantas , Defesa das Plantas contra Herbivoria
2.
J Chem Ecol ; 45(5-6): 502-514, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30911880

RESUMO

In this study we examined the role of sorghum flavonoids in providing resistance against corn leaf aphid (CLA) Rhopalosiphum maidis. In sorghum, accumulation of these flavonoids is regulated by a MYB transcription factor, yellow seed1 (y1). Functional y1 alleles accumulate 3-deoxyflavonoids (3-DFs) and 3-deoxyanthocyanidins (3-DAs) whereas null y1 alleles fail to accumulate these compounds. We found that significantly higher numbers of alate CLA adults colonized null y1 plants as compared to functional y1 plants. Controlled cage experiments and pairwise choice assays demonstrated that apterous aphids preferred to feed and reproduce on null y1 plants. These near-isogenic sorghum lines do not differ in their epicuticular wax content and were also devoid of any leaf trichomes. Significantly higher mortality of CLA was observed on artificial aphid diet supplemented with flavonoids obtained from functional y1 plants as compared to null y1 plants or the relevant controls. Our results demonstrate that the proximate mechanism underlying the deleterious effects on aphids is y1-regulated flavonoids which are important defense compounds against CLA.


Assuntos
Afídeos/fisiologia , Flavonoides/química , Sorghum/química , Animais , Antocianinas/química , Afídeos/crescimento & desenvolvimento , Comportamento Animal/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Flavonoides/farmacologia , Genótipo , Herbivoria , Interações Hospedeiro-Parasita/efeitos dos fármacos , Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-myb/deficiência , Proteínas Proto-Oncogênicas c-myb/genética , Sorghum/metabolismo , Sorghum/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA