Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892005

RESUMO

Skeletal muscle regeneration entails a multifaceted process marked by distinct phases, encompassing inflammation, regeneration, and remodeling. The coordination of these phases hinges upon precise intercellular communication orchestrated by diverse cell types and signaling molecules. Recent focus has turned towards extracellular vesicles (EVs), particularly small EVs, as pivotal mediators facilitating intercellular communication throughout muscle regeneration. Notably, injured muscle provokes the release of EVs originating from myofibers and various cell types, including mesenchymal stem cells, satellite cells, and immune cells such as M2 macrophages, which exhibit anti-inflammatory and promyogenic properties. EVs harbor a specific cargo comprising functional proteins, lipids, and nucleic acids, including microRNAs (miRNAs), which intricately regulate gene expression in target cells and activate downstream pathways crucial for skeletal muscle homeostasis and repair. Furthermore, EVs foster angiogenesis, muscle reinnervation, and extracellular matrix remodeling, thereby modulating the tissue microenvironment and promoting effective tissue regeneration. This review consolidates the current understanding on EVs released by cells and damaged tissues throughout various phases of muscle regeneration with a focus on EV cargo, providing new insights on potential therapeutic interventions to mitigate muscle-related pathologies.


Assuntos
Vesículas Extracelulares , Músculo Esquelético , Regeneração , Vesículas Extracelulares/metabolismo , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Comunicação Celular
2.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238549

RESUMO

Sarcopenia that occurs with advancing age is characterized by a gradual loss of muscle protein component due to the activation of catabolic pathways, increased level of inflammation, and mitochondrial dysfunction. Experimental evidence demonstrates that several physio-pathological processes involved in the onset of sarcopenia may be counteracted by the intake of specific amino acids or antioxidant molecules, suggesting that diet may represent an effective strategy for improving the anabolic response of muscle during aging. The non-essential amino acid taurine is highly expressed in several mammalian tissues, including skeletal muscle where it is involved in the ion channel regulation, in the modulation of intracellular calcium concentration, and where it plays an important role as an antioxidant and anti-inflammatory factor. Here, with the purpose to reproduce the chronic low-grade inflammation characteristics of senescent muscle in an in vitro system, we exploited the role of Tumor Necrosis Factor α (TNF) and we analyzed the effect of taurine in the modulation of different signaling pathways known to be dysregulated in sarcopenia. We demonstrated that the administration of high levels of taurine in myogenic L6 cells stimulates the differentiation process by downregulating the expression of molecules involved in inflammatory pathways and modulating processes such as autophagy and apoptosis. Although further studies are currently ongoing in our laboratory to better elucidate the molecular mechanisms responsible for the positive effect of taurine on myogenic differentiation, this study suggests that taurine supplementation may represent a strategy to delay the loss of mass and functionality characteristic of senescent muscles.


Assuntos
Inflamação/genética , Sarcopenia/genética , Taurina/genética , Fator de Necrose Tumoral alfa/genética , Envelhecimento/genética , Envelhecimento/patologia , Aminoácidos/genética , Animais , Antioxidantes/metabolismo , Autofagia/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Metabolismo/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Sarcopenia/patologia , Transdução de Sinais/genética , Taurina/metabolismo
3.
Cancer Cell Int ; 18: 136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214378

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor in which cancer cells with stem cell-like features, called cancer stem cells (CSCs), were identified. Two CSC populations have been previously identified in GBM, one derived from the GBM area called enhanced lesion (GCSCs) and the other one from the brain area adjacent to the tumor margin (PCSCs) that greatly differ in their growth properties and tumor-initiating ability. To date the most effective chemotherapy to treat GBM is represented by alkylating agents such as temozolomide (TMZ), whose activity can be regulated by histone deacetylases (HDACs) inhibitors through the modulation of O6-methylguanine-DNA methyltransferase (MGMT) expression. Levetiracetam (LEV), a relatively new antiepileptic drug, modulates HDAC levels ultimately silencing MGMT, thus increasing TMZ effectiveness. However, an improvement in the therapeutic efficacy of TMZ is needed. METHODS: Cell proliferation was investigated by BrdU cell proliferation assay and by Western Blot analysis of PCNA expression. Apoptosis was evaluated by Western Blot and Immunofluorescence analysis of the cleaved Caspase-3 expression. MGMT and HDAC4 expression was analyzed by Western Blotting and Immunofluorescence. Statistical analysis was performed using the Student's t test and Mann-Whitney test. RESULTS: Here we evaluated the effect of TMZ on the proliferation rate of the IDH-wildtype GCSCs and PCSCs derived from six patients, in comparison with the effects of other drugs such as etoposide, irinotecan and carboplatin. Our results demonstrated that TMZ was less effective compared to the other agents; hence, we verified the possibility to increase the effect of TMZ by combining it with LEV. Here we show that LEV enhances the effect of TMZ on GCSCs proliferation (being less effective on PCSCs) by decreasing MGMT expression, promoting HDAC4 nuclear translocation and activating apoptotic pathway. CONCLUSIONS: Although further studies are needed to determine the exact mechanism by which LEV makes GBM stem cells more  sensitive to TMZ, these results suggest that the clinical therapeutic efficacy of TMZ in GBM might be enhanced by the combined treatment with LEV.

4.
Curr Genomics ; 19(5): 356-369, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30065611

RESUMO

Muscle homeostasis is guaranteed by a delicate balance between synthesis and degradation of cell proteins and its alteration leads to muscle wasting and diseases. In this review, we describe the major anabolic pathways that are involved in muscle growth and homeostasis and the proteolytic systems that are over-activated in muscle pathologies. Modulation of these pathways comprises an attractive target for drug intervention.

5.
Mediators Inflamm ; 2015: 537853, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491230

RESUMO

To determine the role of mutant SOD1 gene (SOD1(G93A)) on muscle cell differentiation, we derived C2C12 muscle cell lines carrying a stably transfected SOD1(G93A) gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC/SOD1(G93A) in C2C12 cells resulted in dramatic inhibition of myoblast differentiation. Transfected SOD1(G93A) gene expression in postmitotic skeletal myocytes downregulated the expression of relevant markers of committed and differentiated myoblasts such as MyoD, Myogenin, MRF4, and the muscle specific miRNA expression. The inhibitory effects of SOD1(G93A) gene on myogenic program perturbed Akt/p70 and MAPK signaling pathways which promote differentiation cascade. Of note, the inhibition of the myogenic program, by transfected SOD1(G93A) gene expression, impinged also the identity of myogenic cells. Expression of MLC/SOD1(G93A) in C2C12 myogenic cells promoted a fibro-adipogenic progenitors (FAPs) phenotype, upregulating HDAC4 protein and preventing the myogenic commitment complex BAF60C-SWI/SNF. We thus identified potential molecular mediators of the inhibitory effects of SOD1(G93A) on myogenic program and disclosed potential signaling, activated by SOD1(G93A), that affect the identity of the myogenic cell population.


Assuntos
Mitose , Mioblastos/metabolismo , Superóxido Dismutase/genética , Animais , Diferenciação Celular , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Citometria de Fluxo , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/química , Lipídeos/química , Camundongos , MicroRNAs/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , Proteína MyoD/metabolismo , Fatores de Regulação Miogênica/metabolismo , Miogenina/metabolismo , Fenótipo , Transdução de Sinais , Superóxido Dismutase-1 , Transfecção , Regulação para Cima
6.
J Pineal Res ; 57(1): 120-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920214

RESUMO

Compelling evidence demonstrated that melatonin increases p53 activity in cancer cells. p53 undergoes acetylation to be stabilized and activated for driving cells destined for apoptosis/growth inhibition. Over-expression of p300 induces p53 acetylation, leading to cell growth arrest by increasing p21 expression. In turn, p53 activation is mainly regulated in the nucleus by MDM2. MDM2 also acts as E3 ubiquitin ligase, promoting the proteasome-dependent p53 degradation. MDM2 entry into the nucleus is finely tuned by two different modulations: the ribosomal protein L11, acts by sequestering MDM2 in the cytosol, whereas the PI3K-AkT-dependent MDM2 phosphorylation is mandatory for MDM2 translocation across the nuclear membrane. In addition, MDM2-dependent targeting of p53 is regulated in a nonlinear fashion by MDM2/MDMX interplay. Melatonin induces both cell growth inhibition and apoptosis in MCF7 breast cancer cells. We previously reported that this effect is associated with reduced MDM2 levels and increased p53 activity. Herein, we demonstrated that melatonin drastically down-regulates MDM2 gene expression and inhibits MDM2 shuttling into the nucleus, given that melatonin increases L11 and inhibits Akt-PI3K-dependent MDM2 phosphorylation. Melatonin induces a 3-fold increase in both MDMX and p300 levels, decreasing simultaneously Sirt1, a specific inhibitor of p300 activity. Consequently, melatonin-treated cells display significantly higher values of both p53 and acetylated p53. Thus, a 15-fold increase in p21 levels was observed in melatonin-treated cancer cells. Our results provide evidence that melatonin enhances p53 acetylation by modulating the MDM2/MDMX/p300 pathway, disclosing new insights for understanding its anticancer effect.


Assuntos
Melatonina/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Densitometria , Feminino , Imunofluorescência , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-mdm2/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética
7.
Aging Dis ; 15(2): 517-534, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728580

RESUMO

Skeletal muscle is characterized by a remarkable capacity to rearrange after physiological changes and efficiently regenerate. However, during aging, extensive injury, or pathological conditions, the complete regenerative program is severely affected, with a progressive loss of muscle mass and function, a condition known as sarcopenia. The compromised tissue repair program is attributable to the gradual depletion of stem cells and to altered regulatory signals. Defective muscle regeneration can severely affect re-innervation by motor axons, and neuromuscular junctions (NMJs) development, ultimately leading to skeletal muscle atrophy. Defects in NMJ formation and maintenance occur physiologically during aging and are responsible for the pathogenesis of several neuromuscular disorders. However, it is still largely unknown how neuromuscular connections are restored on regenerating fibers. It has been suggested that attractive and repelling signals used for axon guidance could be implicated in this process; in particular, guidance molecules called semaphorins play a key role. Semaphorins are a wide family of extracellular regulatory signals with a multifaceted role in cell-cell communication. Originally discovered as axon guidance factors, they have been implicated in cancer progression, embryonal organogenesis, skeletal muscle innervation, and other physiological and developmental functions in different tissues. In particular, in skeletal muscle, specific semaphorin molecules are involved in the restoration and remodeling of the nerve-muscle connections, thus emphasizing their plausible role to ensure the success of muscle regeneration. This review article aims to discuss the impact of aging on skeletal muscle regeneration and NMJs remodeling and will highlight the most recent insights about the role of semaphorins in this context.


Assuntos
Sarcopenia , Semaforinas , Humanos , Junção Neuromuscular/patologia , Músculo Esquelético/patologia , Axônios/patologia , Sarcopenia/patologia
8.
Neuromolecular Med ; 26(1): 5, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491246

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular disease with a wide disease progression. Despite several efforts to develop efficient biomarkers, many concerns about the available ones still need to be addressed. MicroRNA (miR) are non-coding RNAs that can modulate molecular circuits and are involved in ALS pathogenic mechanisms. 22 fast and 23 slow-progressing-defined ALS patients were recruited. ALSFRS-R, strength, respiratory function, nerve conduction studies, and creatine kinase were evaluated at the baseline and after 6 months of follow-up. The mean monthly reduction of the previous variables (progression index - PI) was calculated. MiR206, 133a-3p, 151a-5p, 199a-5p, and 423-3p were dosed. The univariate analysis showed an independent reduction of miR206 and an increase of miR423-3p in patients with a slow slope of ALSFRS-R and weakness, respectively. MiR206 and 423-3p are differently modulated in fast and slow-progressing ALS patients, suggesting a role for microRNAs in prognosis and therapeutic target.


Assuntos
Esclerose Lateral Amiotrófica , MicroRNAs , Humanos , Esclerose Lateral Amiotrófica/genética , Progressão da Doença , MicroRNAs/genética , Projetos de Pesquisa , Biomarcadores
9.
Front Physiol ; 14: 1165811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250128

RESUMO

Rationale: The anatomical substrate of skeletal muscle autonomic innervation has remained underappreciated since it was described many decades ago. As such, the structural and functional features of muscle sympathetic innervation are largely undetermined in both physiology and pathology, mainly due to methodological limitations in the histopathological analysis of small neuronal fibers in tissue samples. Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease which mainly targets motor neurons, and despite autonomic symptoms occurring in a significant fraction of patients, peripheral sympathetic neurons (SNs) are generally considered unaffected and, as such, poorly studied. Purpose: In this research, we compared sympathetic innervation of normal and ALS muscles, through structural analysis of the sympathetic network in human and murine tissue samples. Methods and Results: We first refined tissue processing to circumvent methodological limitations interfering with the detection of muscle sympathetic innervation. The optimized "Neuro Detection Protocol" (NDP) was validated in human muscle biopsies, demonstrating that SNs innervate, at high density, both blood vessels and skeletal myofibers, independent of the fiber metabolic type. Subsequently, NDP was exploited to analyze sympathetic innervation in muscles of SOD1G93A mice, a preclinical ALS model. Our data show that ALS murine muscles display SN denervation, which has already initiated at the early disease stage and worsened during aging. SN degeneration was also observed in muscles of MLC/SOD1G93A mice, with muscle specific expression of the SOD1G93A mutant gene. Notably, similar alterations in SNs were observed in muscle biopsies from an ALS patient, carrying the SOD1G93A mutation. Conclusion: We set up a protocol for the analysis of murine and, more importantly, human muscle sympathetic innervation. Our results indicate that SNs are additional cell types compromised in ALS and suggest that dysfunctional SOD1G93A muscles affect their sympathetic innervation.

10.
Curr Neurovasc Res ; 20(3): 362-376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614106

RESUMO

BACKGROUND: Physical activity in Amyotrophic Lateral Sclerosis (ALS) plays a controversial role. In some epidemiological studies, both recreational or professional sport exercise has been associated to an increased risk for ALS but the mechanisms underlying the effects of exercise have not been fully elucidated in either patients or animal models. METHODS: To better reproduce the influence of this environmental factor in the pathogenesis of ALS, we exposed SOD1G93A low-copy male mice to multiple exercise sessions at asymptomatic and pre-symptomatic disease stages in an automated home-cage running-wheel system for about 3 months. RESULTS: Repeated voluntary running negatively influenced disease progression by anticipating disease onset, impairing neuromuscular transmission, worsening neuromuscular decline, and exacerbating muscle atrophy. Muscle fibers and neuromuscular junctions (NMJ) as well as key molecular players of the nerve-muscle circuit were similarly affected. CONCLUSION: It thus appears that excessive physical activity can be detrimental in predisposed individuals and these findings could model the increased risk of developing ALS in predisposed and specific professional athletes.


Assuntos
Esclerose Lateral Amiotrófica , Masculino , Animais , Camundongos , Atividade Motora , Modelos Animais de Doenças , Progressão da Doença
11.
Mol Med ; 18: 1076-85, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22669476

RESUMO

Spinal muscular atrophy (SMA) is an inherited neurodegenerative disorder and the first genetic cause of death in childhood. SMA is caused by low levels of survival motor neuron (SMN) protein that induce selective loss of α-motor neurons (MNs) in the spinal cord, resulting in progressive muscle atrophy and consequent respiratory failure. To date, no effective treatment is available to counteract the course of the disease. Among the different therapeutic strategies with potential clinical applications, the evaluation of trophic and/or protective agents able to antagonize MNs degeneration represents an attractive opportunity to develop valid therapies. Here we investigated the effects of IPLEX (recombinant human insulinlike growth factor 1 [rhIGF-1] complexed with recombinant human IGF-1 binding protein 3 [rhIGFBP-3]) on a severe mouse model of SMA. Interestingly, molecular and biochemical analyses of IGF-1 carried out in SMA mice before drug administration revealed marked reductions of IGF-1 circulating levels and hepatic mRNA expression. In this study, we found that perinatal administration of IPLEX, even if does not influence survival and body weight of mice, results in reduced degeneration of MNs, increased muscle fiber size and in amelioration of motor functions in SMA mice. Additionally, we show that phenotypic changes observed are not SMN-dependent, since no significant SMN modification was addressed in treated mice. Collectively, our data indicate IPLEX as a good therapeutic candidate to hinder the progression of the neurodegenerative process in SMA.


Assuntos
Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/administração & dosagem , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/uso terapêutico , Fator de Crescimento Insulin-Like I/administração & dosagem , Fator de Crescimento Insulin-Like I/uso terapêutico , Atividade Motora/efeitos dos fármacos , Neurônios Motores/patologia , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/fisiopatologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Neurônios Motores/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/patologia , Músculos/fisiopatologia , Atrofia Muscular Espinal/sangue , Atrofia Muscular Espinal/patologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Fenótipo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Transcrição Gênica/efeitos dos fármacos
12.
Cells ; 11(7)2022 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-35406771

RESUMO

Genetic and acquired defects of lower motor neurons, peripheral nerves, or skeletal muscle are responsible for several neuromuscular disorders [...].


Assuntos
Doenças Neuromusculares , Junção Neuromuscular , Humanos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Doenças Neuromusculares/terapia , Junção Neuromuscular/fisiologia , Nervos Periféricos
13.
Antioxidants (Basel) ; 11(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35624880

RESUMO

Sarcopenia, which occurs during aging, is characterized by the gradual loss of skeletal muscle mass and function, resulting in a functional decline in physical abilities. Several factors contribute to the onset of sarcopenia, including reduced regenerative capacity, chronic low-grade inflammation, mitochondrial dysfunction, and increased oxidative stress, leading to the activation of catabolic pathways. Physical activity and adequate protein intake are considered effective strategies able to reduce the incidence and severity of sarcopenia by exerting beneficial effects in improving the muscular anabolic response during aging. Taurine is a non-essential amino acid that is highly expressed in mammalian tissues and, particularly, in skeletal muscle where it is involved in the regulation of biological processes and where it acts as an antioxidant and anti-inflammatory factor. Here, we evaluated whether taurine administration in old mice counteracts the physiopathological effects of aging in skeletal muscle. We showed that, in injured muscle, taurine enhances the regenerative process by downregulating the inflammatory response and preserving muscle fiber integrity. Moreover, taurine attenuates ROS production in aged muscles by maintaining a proper cellular redox balance, acting as an antioxidant molecule. Although further studies are needed to better elucidate the molecular mechanisms responsible for the beneficial effect of taurine on skeletal muscle homeostasis, these data demonstrate that taurine administration ameliorates the microenvironment allowing an efficient regenerative process and attenuation of the catabolic pathways related to the onset of sarcopenia.

14.
Br J Pharmacol ; 179(8): 1732-1752, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783031

RESUMO

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by the degeneration of upper and lower motor neurons, progressive wasting and paralysis of voluntary muscles and is currently incurable. Although considered to be a pure motor neuron disease, increasing evidence indicates that the sole protection of motor neurons by a single targeted drug is not sufficient to improve the pathological phenotype. We therefore evaluated the therapeutic potential of the multi-target drug used to treatment of coronary artery disease, trimetazidine, in SOD1G93A mice. EXPERIMENTAL APPROACH: As a metabolic modulator, trimetazidine improves glucose metabolism. Furthermore, trimetazidine enhances mitochondrial metabolism and promotes nerve regeneration, exerting an anti-inflammatory and antioxidant effect. We orally treated SOD1G93A mice with trimetazidine, solubilized in drinking water at a dose of 20 mg kg-1 , from disease onset. We assessed the impact of trimetazidine on disease progression by studying metabolic parameters, grip strength and histological alterations in skeletal muscle, peripheral nerves and the spinal cord. KEY RESULTS: Trimetazidine administration delays motor function decline, improves muscle performance and metabolism, and significantly extends overall survival of SOD1G93A mice (increased median survival of 16 days and 12.5 days for male and female respectively). Moreover, trimetazidine prevents the degeneration of neuromuscular junctions, attenuates motor neuron loss and reduces neuroinflammation in the spinal cord and in peripheral nerves. CONCLUSION AND IMPLICATIONS: In SOD1G93A mice, therapeutic effect of trimetazidine is underpinned by its action on mitochondrial function in skeletal muscle and spinal cord.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Trimetazidina , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico
15.
Cells ; 10(6)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074012

RESUMO

With advancing aging, a decline in physical abilities occurs, leading to reduced mobility and loss of independence. Although many factors contribute to the physio-pathological effects of aging, an important event seems to be related to the compromised integrity of the neuromuscular system, which connects the brain and skeletal muscles via motoneurons and the neuromuscular junctions (NMJs). NMJs undergo severe functional, morphological, and molecular alterations during aging and ultimately degenerate. The effect of this decline is an inexorable decrease in skeletal muscle mass and strength, a condition generally known as sarcopenia. Moreover, several studies have highlighted how the age-related alteration of reactive oxygen species (ROS) homeostasis can contribute to changes in the neuromuscular junction morphology and stability, leading to the reduction in fiber number and innervation. Increasing evidence supports the involvement of epigenetic modifications in age-dependent alterations of the NMJ. In particular, DNA methylation, histone modifications, and miRNA-dependent gene expression represent the major epigenetic mechanisms that play a crucial role in NMJ remodeling. It is established that environmental and lifestyle factors, such as physical exercise and nutrition that are susceptible to change during aging, can modulate epigenetic phenomena and attenuate the age-related NMJs changes. This review aims to highlight the recent epigenetic findings related to the NMJ dysregulation during aging and the role of physical activity and nutrition as possible interventions to attenuate or delay the age-related decline in the neuromuscular system.


Assuntos
Envelhecimento/metabolismo , Metilação de DNA , Epigênese Genética , Código das Histonas , Junção Neuromuscular/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Músculo Esquelético/metabolismo
16.
Neuroscience ; 473: 1-12, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363869

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease for which effective treatment options are still lacking. ALS occurs in sporadic and familial forms which are clinically indistinguishable; about 20% of familial ALS cases are linked to mutations of the superoxide dismutase 1 (SOD1) gene. Fenretinide (FEN), a cancer chemopreventive and antiproliferative agent currently used in several clinical trials, is a multi-target drug which also exhibits redox regulation activities. We analyzed the effects of FEN on mutant SOD1 (mSOD1) toxicity in motoneuronal (NSC34) and a muscle (C2C12) cell lines and evaluated the impacts of chronic administration of a new nanomicellar fenretinide formulation (NanoMFen) on ALS disease progression in the SOD1G93A mouse model. The results showed that FEN significantly prevents the toxicity of mSOD1 expression in NSC34 motor neuron; furthermore, FEN is able to partially overcome the toxic effect of mSOD1 on the myogenic program of C2C12 muscle cells. Administration of NanoMFen ameliorates the disease progression and increases median survival of mSOD1G93A ALS mice, even when given after disease onset; beneficial effects in ALS mice, however, is restricted to female sex. Our data support the therapeutic potential of FEN against ALS-associated SOD1G93A mutant protein toxicity and promote further studies to elucidate specific cellular targets of the drug in ALS. Furthermore, the sex-related efficacy of NanoMFen in mSOD1G93A ALS mice strengthens the importance, in the perspective of a precision medicine approach, of gender pharmacology in ALS research.


Assuntos
Esclerose Lateral Amiotrófica , Fenretinida , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Feminino , Fenretinida/farmacologia , Camundongos , Camundongos Transgênicos , Proteínas Mutantes , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
17.
Cells ; 10(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34440812

RESUMO

ALS is a fatal neurodegenerative disease that is associated with muscle atrophy, motoneuron degeneration and denervation. Different mechanisms have been proposed to explain the pathogenesis of the disease; in this context, microRNAs have been described as biomarkers and potential pathogenetic factors for ALS. MyomiRs are microRNAs produced by skeletal muscle, and they play an important role in tissue homeostasis; moreover, they can be released in blood circulation in pathological conditions, including ALS. However, the functional role of myomiRs in muscle denervation has not yet been fully clarified. In this study, we analyze the levels of two myomiRs, namely miR-206 and miR-133a, in skeletal muscle and blood samples of denervated mice, and we demonstrate that surgical denervation reduces the expression of both miR-206 and miR-133a, while miR-206 but not miR-133a is upregulated during the re-innervation process. Furthermore, we quantify the levels of miR-206 and miR-133a in serum samples of two ALS mouse models, characterized by different disease velocities, and we demonstrate a different modulation of circulating myomiRs during ALS disease, according to the velocity of disease progression. Moreover, taking into account surgical and pathological denervation, we describe a different response to increasing amounts of circulating miR-206, suggesting a hormetic effect of miR-206 in relation to changes in neuromuscular communication.


Assuntos
Esclerose Lateral Amiotrófica/patologia , MicroRNAs/sangue , Músculo Esquelético/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/cirurgia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Denervação Muscular , Músculo Esquelético/inervação , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
18.
Cell Death Discov ; 7(1): 4, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431881

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, muscle atrophy and paralysis. To date, multiple panels of biomarkers have been described in ALS patients and murine models. Nevertheless, none of them has sufficient specificity and thus the molecular signature for ALS prognosis and progression remains to be elucidated. Here we overcome this limitation through a longitudinal study, analyzing serum levels of circulating miRNAs, stable molecules that are recently used as promising biomarkers for many types of human disorders, in ALS patients during the progression of the pathology. We performed next-generation sequencing (NGS) analysis and absolute RT quantification of serum samples of ALS patients and healthy controls. The expression levels of five selected miRNAs were quantitatively analyzed during disease progression in each patient and we demonstrated that high levels of miR-206, miR-133a and miR-151a-5p can predict a slower clinical decline of patient functionality. In particular, we found that miR-206 and miR-151a-5p serum levels were significantly up-regulated at the mild stage of ALS pathology, to decrease in the following moderate and severe stages, whereas the expression levels of miR-133a and miR-199a-5p remained low throughout the course of the disease, showing a diagnostic significance in moderate and severe stages for miR-133a and in mild and terminal ones for miR-199a-5p. Moreover, we found that miR-423-3p and 151a-5p were significantly downregulated respectively in mild and terminal stages of the disease. These data suggest that these miRNAs represent potential prognostic markers for ALS disease.

19.
J Cell Biol ; 168(2): 193-9, 2005 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-15657392

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a selective degeneration of motor neurons, atrophy, and paralysis of skeletal muscle. Although a significant proportion of familial ALS results from a toxic gain of function associated with dominant SOD1 mutations, the etiology of the disease and its specific cellular origins have remained difficult to define. Here, we show that muscle-restricted expression of a localized insulin-like growth factor (Igf) -1 isoform maintained muscle integrity and enhanced satellite cell activity in SOD1(G93A) transgenic mice, inducing calcineurin-mediated regenerative pathways. Muscle-specific expression of local Igf-1 (mIgf-1) isoform also stabilized neuromuscular junctions, reduced inflammation in the spinal cord, and enhanced motor neuronal survival in SOD1(G93A) mice, delaying the onset and progression of the disease. These studies establish skeletal muscle as a primary target for the dominant action of inherited SOD1 mutation and suggest that muscle fibers provide appropriate factors, such as mIgf-1, for neuron survival.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Fator de Crescimento Insulin-Like I/fisiologia , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Agrina/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/mortalidade , Animais , Astrócitos/metabolismo , Northern Blotting , Western Blotting , Calcineurina/genética , Calcineurina/metabolismo , Sistema Nervoso Central/química , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Desmina/metabolismo , Modelos Animais de Doenças , Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/genética , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/química , Músculo Esquelético/patologia , Cadeias Pesadas de Miosina/metabolismo , Junção Neuromuscular/metabolismo , Fator de Transcrição PAX7 , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Células Satélites de Músculo Esquelético/química , Células Satélites de Músculo Esquelético/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/metabolismo , Caminhada
20.
Endocr Dev ; 14: 29-37, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19293573

RESUMO

In the last decade, dramatic progress has been made in elucidating the molecular defects underlying a number of muscle diseases. With the characterization of mutations responsible for muscle dysfunction in several inherited pathologies, and the identification of novel signaling pathways, subtle alterations in which can lead to significant defects in muscle metabolism, the field is poised to devise successful strategies for treatment of this debilitating and often fatal group of human ailments. Yet progress has been slow in therapeutic applications of our newly gained knowledge. The complexity of muscle types, the intimate relationship between structural integrity and mechanical function, and the sensitivity of skeletal muscle to metabolic perturbations have impeded rapid progress in successful clinical intervention. The relatively poor regenerative properties of striated muscle compound the devastating effects of muscle degeneration. Perhaps the most difficult hurdle is the sheer volume of tissue that must be treated to effect a significant improvement in quality of life. Recent studies on the role of insulin-like growth factor-1 in skeletal muscle growth and homeostasis have excited new interest in this important mediator of anabolic pathways and suggest promising new avenues for intervention in catabolic disease. In this review, we will discuss the potential therapeutic role of local insulin-like growth factor 1 in the treatment of muscle wasting associated with muscle diseases.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares , Transdução de Sinais/fisiologia , Humanos , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA