Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Sci ; 13(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37759831

RESUMO

BACKGROUND: Multiple measures of injury severity are suggested as common data elements in preclinical traumatic brain injury (TBI) research. The robustness of these measures in characterizing injury severity is unclear. In particular, it is not known how reliably they predict individual outcomes after experimental TBI. METHODS: We assessed several commonly used measures of initial injury severity for their ability to predict chronic cognitive outcomes in a rat lateral fluid percussion (LFPI) model of TBI. At the time of injury, we assessed reflex righting time, neurologic severity scores, and 24 h weight loss. Sixty days after LFPI, we evaluated working memory using a spontaneous alternation T-maze task. RESULTS: We found that righting time and weight loss had no correlation to chronic T-maze performance, while neurologic severity score correlated weakly. DISCUSSION: Taken together, our results indicate that commonly used early measures of injury severity do not robustly predict longer-term outcomes. This finding parallels the uncertainty in predicting individual outcomes in TBI clinical populations.

2.
ACS Appl Bio Mater ; 4(2): 1655-1667, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014513

RESUMO

Mesenchymal stem cell (MSC) therapy has been widely tested in clinical trials to promote healing post-myocardial infarction. However, low cell retention and the need for a large donor cell number in human studies remain a key challenge for clinical translation. Natural biomaterials such as gelatin are ideally suited as scaffolds to deliver and enhance cell engraftment after transplantation. A potential drawback of MSC encapsulation in the hydrogel is that the bulky matrix may limit their biological function and interaction with the surrounding tissue microenvironment that conveys important injury signals. To overcome this limitation, we adopted a gelatin methacrylate (gelMA) cell-coating technique that photocross-links gelatin on the individual cell surface at the nanoscale. The present study investigated the cardiac protection of gelMA coated, hypoxia preconditioned MSCs (gelMA-MSCs) in a murine myocardial infarction (MI) model. We demonstrate that the direct injection of gelMA-MSC results in significantly higher myocardial engraftment 7 days after MI compared to uncoated MSCs. GelMA-MSC further amplified MSC benefits resulting in enhanced cardioprotection as measured by cardiac function, scar size, and angiogenesis. Improved MSC cardiac retention also led to a greater cardiac immunomodulatory function after injury. Taken together, this study demonstrated the efficacy of gelMA-MSCs in treating cardiac injury with a promising potential to reduce the need for donor MSCs through enhanced myocardial engraftment.


Assuntos
Sobrevivência Celular/genética , Células-Tronco Mesenquimais/metabolismo , Miocárdio/metabolismo , Animais , Humanos , Camundongos , Polímeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA