Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mov Ecol ; 12(1): 20, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461249

RESUMO

BACKGROUND: Interaction analysis via movement in space and time contributes to understanding social relationships among individuals and their dynamics in ecological systems. While there is an exciting growth in research in computational methods for interaction analysis using movement data, there remain challenges regarding reproducibility and replicability of the existing approaches. The current movement interaction analysis tools are often less accessible or tested for broader use in ecological research. RESULTS: To address these challenges, this paper presents ORTEGA, an Object-oRiented TimE-Geographic Analytical tool, as an open-source Python package for analyzing potential interactions between pairs of moving entities based on the observation of their movement. ORTEGA is developed based on one of the newly emerged time-geographic approaches for quantifying space-time interaction patterns among animals. A case study is presented to demonstrate and evaluate the functionalities of ORTEGA in tracing dynamic interaction patterns in animal movement data. Besides making the analytical code and data freely available to the community, the developed package also offers an extension of the existing theoretical development of ORTEGA for incorporating a context-aware ability to inform interaction analysis. CONCLUSIONS: ORTEGA contributes two significant capabilities: (1) the functions to identify potential interactions (e.g., encounters, concurrent interactions, delayed interactions) from movement data of two or more entities using a time-geographic-based approach; and (2) the capacity to compute attributes of potential interaction events including start time, end time, interaction duration, and difference in movement parameters such as speed and moving direction, and also contextualize the identified potential interaction events.

2.
Mov Ecol ; 12(1): 13, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310255

RESUMO

BACKGROUND: Interaction through movement can be used as a marker to understand and model interspecific and intraspecific species dynamics, and the collective behavior of animals sharing the same space. This research leverages the time-geography framework, commonly used in human movement research, to explore the dynamic patterns of interaction between Indochinese tigers (Panthera tigris corbeti) in the western forest complex (WEFCOM) in Thailand. METHODS: We propose and assess ORTEGA, a time-geographic interaction analysis method, to trace spatio-temporal interactions patterns and home range shifts among tigers. Using unique GPS tracking data of tigers in WEFCOM collected over multiple years, concurrent and delayed interaction patterns of tigers are investigated. The outcomes are compared for intraspecific tiger interaction across different genders, relationships, and life stages. Additionally, the performance of ORTEGA is compared to a commonly used proximity-based approach. RESULTS: Among the 67 tracked tigers, 42 show concurrent interactions at shared boundaries. Further investigation of five tigers with overlapping home ranges (two adult females, a male, and two young male tigers) suggests that the mother tiger and her two young mostly stay together before their dispersal but interact less post-dispersal. The male tiger increases encounters with the mother tiger while her young shift their home ranges. On another timeline, the neighbor female tiger mostly avoids the mother tiger. Through these home range dynamics and interaction patterns, we identify four types of interaction among these tigers: following, encounter, latency, and avoidance. Compared to the proximity-based approach, ORTEGA demonstrates better detects concurrent mother-young interactions during pre-dispersal, while the proximity-based approach misses many interactions among the dyads. With larger spatial buffers and temporal windows, the proximity-based approach detects more encounters but may overestimate the duration of interaction. CONCLUSIONS: This research demonstrates the applicability and merits of ORTEGA as a time-geographic based approach to animal movement interaction analysis. We show time geography can develop valuable, data-driven insights about animal behavior and interactions. ORTEGA effectively traces frequent encounters and temporally delayed interactions between animals, without relying on specific spatial and temporal buffers. Future research should integrate contextual and behavioral information to better identify and characterize the nature of species interaction.

3.
J Geogr Syst ; : 1-19, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36811088

RESUMO

Time geography is widely used by geographers as a model for understanding accessibility. Recent changes in how access is created, an increasing awareness of the need to better understand individual variability in access, and growing availability of detailed spatial and mobility data have created an opportunity to build more flexible time geography models. Our goal is to outline a research agenda for a modern time geography that allows new modes of access and a variety of data to flexibly represent the complexity of the relationship between time and access. A modern time geography is more able to nuance individual experience and creates a pathway for monitoring progress toward inclusion. We lean on the original work by Hägerstrand and the field of movement GIScience to develop both a framework and research roadmap that, if addressed, can enhance the flexibility of time geography to help ensure time geography will continue as a cornerstone of accessibility research. The proposed framework emphasizes the individual and differentiates access based on how individuals experience internal, external, and structural factors. To enhance nuanced representation of inclusion and exclusion, we propose research needs, focusing efforts on implementing flexible space-time constraints, inclusion of definitive variables, addressing mechanisms for representing and including relative variables, and addressing the need to link between individual and population scales of analysis. The accelerated digitalization of society, including availability of new forms of digital spatial data, combined with a focus on understanding how access varies across race, income, sexual identity, and physical limitations requires new consideration for how we include constraints in our studies of access. It is an exciting era for time geography and there are massive opportunities for all geographers to consider how to incorporate new realities and research priorities into time geography models, which have had a long tradition of supporting theory and implementation of accessibility research.

4.
Geogr Anal ; 55(2): 325-341, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38505735

RESUMO

In this commentary we reflect on the potential and power of geographical analysis, as a set of methods, theoretical approaches, and perspectives, to increase our understanding of how space and place matter for all. We emphasize key aspects of the field, including accessibility, urban change, and spatial interaction and behavior, providing a high-level research agenda that indicates a variety of gaps and routes for future research that will not only lead to more equitable and aware solutions to local and global challenges, but also innovative and novel research methods, concepts, and data. We close with a set of representation and inclusion challenges to our discipline, researchers, and publication outlets.

5.
Mov Ecol ; 9(1): 55, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736518

RESUMO

BACKGROUND: This paper introduces DynamoVis version 1.0, an open-source software developed to design, record and export custom animations and multivariate visualizations from movement data, enabling visual exploration and communication of patterns capturing the associations between animals' movement and its affecting internal and external factors. Proper representation of these dependencies grounded on cartographic principles and intuitive visual forms can facilitate scientific discovery, decision-making, collaborations, and foster understanding of movement. RESULTS: DynamoVis offers a visualization platform that is accessible and easily usable for scientists and general public without a need for prior experience with data visualization or programming. The intuitive design focuses on a simple interface to apply cartographic techniques, giving ecologists of all backgrounds the power to visualize and communicate complex movement patterns. CONCLUSIONS: DynamoVis 1.0 offers a flexible platform to quickly and easily visualize and animate animal tracks to uncover hidden patterns captured in the data, and explore the effects of internal and external factors on their movement path choices and motion capacities. Hence, DynamoVis can be used as a powerful communicative and hypothesis generation tool for scientific discovery and decision-making through visual reasoning. The visual products can be used as a research and pedagogical tool in movement ecology.

6.
Int J Geogr Inf Sci ; 33(5): 855-876, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33013182

RESUMO

There is long-standing scientific interest in understanding purposeful movement by animals and humans. Traditionally, collecting data on individual moving entities was difficult and time-consuming, limiting scientific progress. The growth of location-aware and other geospatial technologies for capturing, managing and analyzing moving objects data are shattering these limitations, leading to revolutions in animal movement ecology and human mobility science. Despite parallel transitions towards massive individual-level data collected automatically via sensors, there is little scientific cross-fertilization across the animal and human divide. There are potential synergies from converging these separate domains towards an integrated science of movement. This paper discusses the data-driven revolutions in the animal movement ecology and human mobility science, their contrasting worldviews and, as examples of complementarity, transdisciplinary questions that span both fields. We also identify research challenges that should be met to develop an integrated science of movement trajectories.

7.
Philos Trans R Soc Lond B Biol Sci ; 369(1643): 20130195, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24733950

RESUMO

Variation is key to the adaptability of species and their ability to survive changes to the Earth's climate and habitats. Plasticity in movement strategies allows a species to better track spatial dynamics of habitat quality. We describe the mechanisms that shape the movement of a long-distance migrant bird (turkey vulture, Cathartes aura) across two continents using satellite tracking coupled with remote-sensing science. Using nearly 10 years of data from 24 satellite-tracked vultures in four distinct populations, we describe an enormous amount of variation in their movement patterns. We related vulture movement to environmental conditions and found important correlations explaining how far they need to move to find food (indexed by the Normalized Difference Vegetation Index) and how fast they can move based on the prevalence of thermals and temperature. We conclude that the extensive variability in the movement ecology of turkey vultures, facilitated by their energetically efficient thermal soaring, suggests that this species is likely to do well across periods of modest climate change. The large scale and sample sizes needed for such analysis in a widespread migrant emphasizes the need for integrated and collaborative efforts to obtain tracking data and for policies, tools and open datasets to encourage such collaborations and data sharing.


Assuntos
Adaptação Fisiológica/fisiologia , Migração Animal/fisiologia , Aves/fisiologia , Ecossistema , Animais , Modelos Logísticos , América do Norte , Imagens de Satélites/métodos , Estações do Ano , América do Sul
8.
Mov Ecol ; 1(1): 3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25709817

RESUMO

BACKGROUND: The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With advances in positioning and sensor technologies, it is now possible to capture animal locations at high spatial and temporal granularities. Likewise, scientists have an increasing access to large volumes of environmental data. Environmental data are heterogeneous in source and format, and are usually obtained at different spatiotemporal scales than movement data. Indeed, there remain scientific and technical challenges in developing linkages between the growing collections of animal movement data and the large repositories of heterogeneous remote sensing observations, as well as in the developments of new statistical and computational methods for the analysis of movement in its environmental context. These challenges include retrieval, indexing, efficient storage, data integration, and analytical techniques. RESULTS: This paper contributes to movement ecology research by presenting a new publicly available system, Environmental-Data Automated Track Annotation (Env-DATA), that automates annotation of movement trajectories with ambient atmospheric observations and underlying landscape information. Env-DATA provides a free and easy-to-use platform that eliminates technical difficulties of the annotation processes and relieves end users of a ton of tedious and time-consuming tasks associated with annotation, including data acquisition, data transformation and integration, resampling, and interpolation. The system is illustrated with a case study of Galapagos Albatross (Phoebastria irrorata) tracks and their relationship to wind, ocean productivity and chlorophyll concentration. Our case study illustrates why adult albatrosses make long-range trips to preferred, productive areas and how wind assistance facilitates their return flights while their outbound flights are hampered by head winds. CONCLUSIONS: The new Env-DATA system enhances Movebank, an open portal of animal tracking data, by automating access to environmental variables from global remote sensing, weather, and ecosystem products from open web resources. The system provides several interpolation methods from the native grid resolution and structure to a global regular grid linked with the movement tracks in space and time. The aim is to facilitate new understanding and predictive capabilities of spatiotemporal patterns of animal movement in response to dynamic and changing environments from local to global scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA