Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Comput Biol ; 20(6): e1012212, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885277

RESUMO

Periplasmic binding proteins (PBPs) are bacterial proteins commonly used as scaffolds for substrate-detecting biosensors. In these biosensors, effector proteins (for example fluorescent proteins) are inserted into a PBP such that the effector protein's output changes upon PBP-substate binding. The insertion site is often determined by comparison of PBP apo/holo crystal structures, but random insertion libraries have shown that this can miss the best sites. Here, we present a PBP biosensor design method based on residue contact analysis from molecular dynamics. This computational method identifies the best previously known insertion sites in the maltose binding PBP, and suggests further previously unknown sites. We experimentally characterise fluorescent protein insertions at these new sites, finding they too give functional biosensors. Furthermore, our method is sufficiently flexible to both suggest insertion sites compatible with a variety of effector proteins, and be applied to binding proteins beyond PBPs.


Assuntos
Técnicas Biossensoriais , Simulação de Dinâmica Molecular , Proteínas Periplásmicas de Ligação , Técnicas Biossensoriais/métodos , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo , Biologia Computacional/métodos , Sítios de Ligação , Ligação Proteica
2.
Plant J ; 103(6): 2330-2343, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32530068

RESUMO

The phenotypic analysis of root system growth is important to inform efforts to enhance plant resource acquisition from soils; however, root phenotyping remains challenging because of the opacity of soil, requiring systems that facilitate root system visibility and image acquisition. Previously reported systems require costly or bespoke materials not available in most countries, where breeders need tools to select varieties best adapted to local soils and field conditions. Here, we report an affordable soil-based growth (rhizobox) and imaging system to phenotype root development in glasshouses or shelters. All components of the system are made from locally available commodity components, facilitating the adoption of this affordable technology in low-income countries. The rhizobox is large enough (approximately 6000 cm2 of visible soil) to avoid restricting vertical root system growth for most if not all of the life cycle, yet light enough (approximately 21 kg when filled with soil) for routine handling. Support structures and an imaging station, with five cameras covering the whole soil surface, complement the rhizoboxes. Images are acquired via the Phenotiki sensor interface, collected, stitched and analysed. Root system architecture (RSA) parameters are quantified without intervention. The RSAs of a dicot species (Cicer arietinum, chickpea) and a monocot species (Hordeum vulgare, barley), exhibiting contrasting root systems, were analysed. Insights into root system dynamics during vegetative and reproductive stages of the chickpea life cycle were obtained. This affordable system is relevant for efforts in Ethiopia and other low- and middle-income countries to enhance crop yields and climate resilience sustainably.


Assuntos
Raízes de Plantas/anatomia & histologia , Envelhecimento , Cicer/anatomia & histologia , Cicer/genética , Genótipo , Hordeum/anatomia & histologia , Hordeum/genética , Fenótipo , Solo
3.
Plant J ; 98(1): 153-164, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548978

RESUMO

Cell-, tissue- or organ-specific inducible expression systems are powerful tools for functional analysis of changes to the pattern, level or timing of gene expression. However, plant researchers lack standardised reagents that promote reproducibility across the community. Here, we report the development and functional testing of a Gateway-based system for quantitatively, spatially and temporally controlling inducible gene expression in Arabidopsis that overcomes several drawbacks of the legacy systems. We used this modular driver/effector system with intrinsic reporting of spatio-temporal promoter activity to generate 18 well-characterised homozygous transformed lines showing the expected expression patterns specific for the major cell types of the Arabidopsis root; seed and plasmid vectors are available through the Arabidopsis stock centre. The system's tight regulation was validated by assessing the effects of diphtheria toxin A chain expression. We assessed the utility of Production of Anthocyanin Pigment 1 (PAP1) as an encoded effector mediating cell-autonomous marks. With this shared resource of characterised reference driver lines, which can be expanded with additional promoters and the use of other fluorescent proteins, we aim to contribute towards enhancing reproducibility of qualitative and quantitative analyses.


Assuntos
Arabidopsis/genética , Genes Reporter , Antocianinas/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estradiol/metabolismo , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
EMBO J ; 35(19): 2068-2086, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27497297

RESUMO

Upon DNA damage, cyclin-dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology-dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant-specific B1-type CDKs (CDKB1s) and the class of B1-type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1-CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA CYCB1;1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell-cycle activity is blocked after DNA damage, CDKB1-CYCB1 complexes are specifically activated to mediate HR.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Reparo de DNA por Recombinação , Proteínas de Arabidopsis/genética , Ciclina B/genética , Quinases Ciclina-Dependentes/genética , Rad51 Recombinase/metabolismo , Fatores de Transcrição/metabolismo
5.
J Exp Bot ; 71(13): 3902-3921, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32337556

RESUMO

Legumes form symbioses with rhizobia to fix N2 in root nodules to supplement their nitrogen (N) requirements. Many studies have shown how symbioses affect the shoot, but far less is understood about how they modify root development and root system architecture (RSA). RSA is the distribution of roots in space and over time. RSA reflects host resource allocation into below-ground organs and patterns of host resource foraging underpinning its resource acquisition capacity. Recent studies have revealed a more comprehensive relationship between hosts and symbionts: the latter can affect host resource acquisition for phosphate and iron, and the symbiont's production of plant growth regulators can enhance host resource flux and abundance. We review the current understanding of the effects of rhizobia-legume symbioses on legume root systems. We focus on resource acquisition and allocation within the host to conceptualize the effect of symbioses on RSA, and highlight opportunities for new directions of research.


Assuntos
Fabaceae , Rhizobium , Nitrogênio , Fixação de Nitrogênio , Raízes de Plantas , Simbiose
6.
Plant J ; 96(4): 880-890, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101442

RESUMO

Direct observation of morphological plant traits is tedious and a bottleneck for high-throughput phenotyping. Hence, interest in image-based analysis is increasing, with the requirement for software that can reliably extract plant traits, such as leaf count, preferably across a variety of species and growth conditions. However, current leaf counting methods do not work across species or conditions and therefore may lack broad utility. In this paper, we present Pheno-Deep Counter, a single deep network that can predict leaf count in two-dimensional (2D) plant images of different species with a rosette-shaped appearance. We demonstrate that our architecture can count leaves from multi-modal 2D images, such as visible light, fluorescence and near-infrared. Our network design is flexible, allowing for inputs to be added or removed to accommodate new modalities. Furthermore, our architecture can be used as is without requiring dataset-specific customization of the internal structure of the network, opening its use to new scenarios. Pheno-Deep Counter is able to produce accurate predictions in many plant species and, once trained, can count leaves in a few seconds. Through our universal and open source approach to deep counting we aim to broaden utilization of machine learning-based approaches to leaf counting. Our implementation can be downloaded at https://bitbucket.org/tuttoweb/pheno-deep-counter.


Assuntos
Aprendizado Profundo , Fenótipo , Folhas de Planta/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Plantas , Software
7.
Plant Physiol ; 176(4): 2943-2962, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475899

RESUMO

Phosphate starvation-mediated induction of the HAD-type phosphatases PPsPase1 (AT1G73010) and PECP1 (AT1G17710) has been reported in Arabidopsis (Arabidopsis thaliana). However, little is known about their in vivo function or impact on plant responses to nutrient deficiency. The preferences of PPsPase1 and PECP1 for different substrates have been studied in vitro but require confirmation in planta. Here, we examined the in vivo function of both enzymes using a reverse genetics approach. We demonstrated that PPsPase1 and PECP1 affect plant phosphocholine and phosphoethanolamine content, but not the pyrophosphate-related phenotypes. These observations suggest that the enzymes play a similar role in planta related to the recycling of polar heads from membrane lipids that is triggered during phosphate starvation. Altering the expression of the genes encoding these enzymes had no effect on lipid composition, possibly due to compensation by other lipid recycling pathways triggered during phosphate starvation. Furthermore, our results indicated that PPsPase1 and PECP1 do not influence phosphate homeostasis, since the inactivation of these genes had no effect on phosphate content or on the induction of molecular markers related to phosphate starvation. A combination of transcriptomics and imaging analyses revealed that PPsPase1 and PECP1 display a highly dynamic expression pattern that closely mirrors the phosphate status. This temporal dynamism, combined with the wide range of induction levels, broad expression, and lack of a direct effect on Pi content and regulation, makes PPsPase1 and PECP1 useful molecular markers of the phosphate starvation response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Etanolaminas/metabolismo , Pirofosfatase Inorgânica/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilcolina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Homeostase , Pirofosfatase Inorgânica/genética , Lipídeos de Membrana/metabolismo , Mutação , Monoéster Fosfórico Hidrolases/genética
8.
Ann Bot ; 118(4): 763-776, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27358290

RESUMO

Background and Aims The Arabidopsis thaliana root is a key experimental system in developmental biology. Despite its importance, we are still lacking an objective and broadly applicable approach for identification of number and position of developmental domains or zones along the longitudinal axis of the root apex or boundaries between them, which is essential for understanding the mechanisms underlying cell proliferation, elongation and differentiation dynamics during root development. Methods We used a statistics approach, the multiple structural change algorithm (MSC), for estimating the number and position of developmental transitions in the growing portion of the root apex. Once the positions of the transitions between domains and zones were determined, linear models were used to estimate the critical size of dividing cells (LcritD) and other parameters. Key Results The MSC approach enabled identification of three discrete regions in the growing parts of the root that correspond to the proliferation domain (PD), the transition domain (TD) and the elongation zone (EZ). Simultaneous application of the MSC approach and G2-to-M transition (CycB1;1DB:GFP) and endoreduplication (pCCS52A1:GUS) molecular markers confirmed the presence and position of the TD. We also found that the MADS-box gene XAANTAL1 (XAL1) is required for the wild-type (wt) PD increase in length during the first 2 weeks of growth. Contrary to wt, in the xal1 loss-of-function mutant the increase and acceleration of root growth were not detected. We also found alterations in LcritD in xal1 compared with wt, which was associated with longer cell cycle duration in the mutant. Conclusions The MSC approach is a useful, objective and versatile tool for identification of the PD, TD and EZ and boundaries between them in the root apices and can be used for the phenotyping of different genetic backgrounds, experimental treatments or developmental changes within a genotype. The tool is publicly available at www.ibiologia.com.mx/MSC_analysis.

10.
Curr Biol ; 18(2): R72-4, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18211844

RESUMO

Recent studies show that, in plant roots, mutually dependent regulatory mechanisms operating at cell and tissue levels interact to generate a self-sustaining distribution of the hormone auxin which provides a framework for developmental patterning and growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Padronização Corporal/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
11.
Curr Opin Plant Biol ; 11(5): 536-40, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18614391

RESUMO

Systemic signaling between roots and shoots is required to maintain mineral nutrient homeostasis for optimal metabolism under varying environmental conditions. Recent work has revealed molecular components of a signaling module that controls systemic phosphate homeostasis, modulates uptake and transport in Arabidopsis. This module comprises PHO2, a protein that controls protein stability, the phloem-mobile microRNA-399 and a ribo-regulator that squelches the activity of miR399 towards PHO2 by a novel mechanism. This advance is a significant step for the design of future rational approaches to improve crop phosphate use efficiency.


Assuntos
Arabidopsis/metabolismo , Fosfatos/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Arabidopsis/fisiologia , Homeostase , MicroRNAs/fisiologia , Modelos Biológicos , RNA não Traduzido/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia
12.
Curr Biol ; 17(9): R321-3, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17470344

RESUMO

Recent studies have revealed important new details of how cytokinin-dependent mechanisms control plant growth. Intriguingly, cytokinins are involved in both maintaining meristems and promoting differentiation.


Assuntos
Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/metabolismo , Desenvolvimento Vegetal , Diferenciação Celular/fisiologia , Citocininas/biossíntese , Meristema/fisiologia , Modelos Biológicos , Plantas/metabolismo
13.
Curr Biol ; 16(6): R199-201, 2006 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-16546070

RESUMO

Three recent studies have uncovered effector mechanisms and novel pathways in the regulation of the dynamic changes to cell behaviour that occur in plant meristems. The results show how exquisite regulation of cell-cycle mechanisms is central to root stem cell homeostasis.


Assuntos
Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Células Vegetais , Células-Tronco/citologia , Diferenciação Celular/genética , Retroalimentação Fisiológica , Meristema/citologia , Meristema/genética , Modelos Genéticos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas/genética , Plantas/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
14.
Curr Biol ; 13(9): R368-74, 2003 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12725756

RESUMO

Recent studies have provided significant new insights into the gene actions that specify and maintain stem cells in plant shoots and roots. New layers of genetic control and potential signalling pathways and effector mechanisms have emerged from these new studies and will be reviewed here. These new findings refine the current model in which stem cells in plant meristems are regulated by negative feedback loops and uncover a fundamental mechanism for stem cell maintenance that might be common to shoots and roots.


Assuntos
Meristema/genética , Meristema/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Retroalimentação Fisiológica/fisiologia , Proteínas de Homeodomínio/genética , Meristema/citologia , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Células-Tronco/fisiologia
16.
Curr Opin Plant Biol ; 15(4): 400-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22445191

RESUMO

Nonhost resistance (NHR), in which a successful pathogen on some plants fails to overcome host barriers on others, has attracted much attention owing to its potential for robust crop improvement. Recent advances reveal that a multitude of underlying mechanisms contribute to NHR, ranging from components shared with recognition-based defenses up to recessive susceptibility factors involved in plant primary metabolism. Most NHR appears multi-factorial and quantitative. This implies that there is no single, 'silver bullet' NHR mechanism that can be used to broadly restrict pathogens in many or all crops.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Vegetal/genética , Plantas/microbiologia , Plantas/virologia
17.
Science ; 331(6021): 1185-8, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21385714

RESUMO

Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas species virulent on Arabidopsis. These sax genes are required to overwhelm isothiocyanate-based defenses and facilitate a disease outcome, especially in the young leaves critical for plant survival. Introduction of saxCAB genes into non-host strains enabled them to overcome these Arabidopsis defenses. Our study shows that aliphatic isothiocyanates, previously shown to limit damage by herbivores, are also crucial, robust, and developmentally regulated defenses that underpin non-host resistance in the Arabidopsis-Pseudomonas pathosystem.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Genes Bacterianos , Interações Hospedeiro-Patógeno , Pseudomonas syringae/genética , Tiocianatos/metabolismo , Tiocianatos/farmacologia , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Glucosinolatos/metabolismo , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Óperon , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/patogenicidade , Sulfóxidos , Tiocianatos/isolamento & purificação
18.
Curr Biol ; 20(5): R246-8, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20219178

RESUMO

Recently discovered regulators of asymmetric cell division highlight differences in the mechanisms responsible for cell fate segregation in plants and animals.


Assuntos
Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
19.
Plant Physiol ; 150(4): 1750-61, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19571312

RESUMO

We isolated an activation-tagged Arabidopsis (Arabidopsis thaliana) line, constitutive disease susceptibility2-1D (cds2-1D), that showed enhanced bacterial growth when challenged with various Pseudomonas syringae strains. Systemic acquired resistance and systemic PATHOGENESIS-RELATED GENE1 induction were also compromised in cds2-1D. The T-DNA insertion adjacent to NINE-CIS-EPOXYCAROTENOID DIOXYGENASE5 (NCED5), one of six genes encoding the abscisic acid (ABA) biosynthetic enzyme NCED, caused a massive increase in transcript level and enhanced ABA levels >2-fold. Overexpression of NCED genes recreated the enhanced disease susceptibility phenotype. NCED2, NCED3, and NCED5 were induced, and ABA accumulated strongly following compatible P. syringae infection. The ABA biosynthetic mutant aba3-1 showed reduced susceptibility to virulent P. syringae, and ABA, whether through exogenous application or endogenous accumulation in response to mild water stress, resulted in increased bacterial growth following challenge with virulent P. syringae, indicating that ABA suppresses resistance to P. syringae. Likewise ABA accumulation also compromised resistance to the biotrophic oomycete Hyaloperonospora arabidopsis, whereas resistance to the fungus Alternaria brassicicola was enhanced in cds2-1D plants and compromised in aba3-1 plants, indicating that ABA promotes resistance to this necrotroph. Comparison of the accumulation of salicylic acid and jasmonic acid in the wild type, cds2-1D, and aba3-1 plants challenged with P. syringae showed that ABA promotes jasmonic acid accumulation and exhibits a complex antagonistic relationship with salicylic acid. Our findings provide genetic evidence that the abiotic stress signal ABA also has profound roles in modulating diverse plant-pathogen interactions mediated at least in part by cross talk with the jasmonic acid and salicylic acid biotic stress signal pathways.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Alelos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Dioxigenases , Genes Dominantes , Genes de Plantas , Imunidade Inata/genética , Mutação/genética , Oxigenases/metabolismo , Oxilipinas/metabolismo , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo
20.
Plant Cell ; 21(7): 1940-56, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19638475

RESUMO

Male germline development in angiosperms produces the pair of sperm cells required for double fertilization. A key regulator of this process in Arabidopsis thaliana is the male germline-specific transcription factor DUO POLLEN1 (DUO1) that coordinates germ cell division and gamete specification. Here, we uncover the role of DUO3, a nuclear protein that has a distinct, but overlapping role with DUO1 in male germline development. DUO3 is a conserved protein in land plants and is related to GON-4, a cell lineage regulator of gonadogenesis in Caenorhabditis elegans. Mutant duo3-1 germ cells either fail to divide or show a delay in division, and we show that, unlike DUO1, DUO3 promotes entry into mitosis independent of the G2/M regulator CYCB1;1. We also show that DUO3 is required for the expression of a subset of germline genes under DUO1 control and that like DUO1, DUO3 is essential for sperm cell specification and fertilization. Furthermore, we demonstrate an essential sporophytic role for DUO3 in cell division and embryo patterning. Our findings demonstrate essential developmental roles for DUO3 in cell cycle progression and cell specification in both gametophytic and sporophytic tissues.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/citologia , Arabidopsis/embriologia , Desenvolvimento Embrionário/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Biologia Computacional , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Microscopia Confocal , Dados de Sequência Molecular , Pólen/citologia , Pólen/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA