Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 305(7): G483-95, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886860

RESUMO

Shortcomings of previously reported preclinical models of nonalcoholic steatohepatitis (NASH) include inadequate methods used to induce disease and assess liver pathology. We have developed a dietary model of NASH displaying features observed clinically and methods for objectively assessing disease progression. Mice fed a diet containing 40% fat (of which ∼18% was trans fat), 22% fructose, and 2% cholesterol developed three stages of nonalcoholic fatty liver disease (steatosis, steatohepatitis with fibrosis, and cirrhosis) as assessed by histological and biochemical methods. Using digital pathology to reconstruct the left lateral and right medial lobes of the liver, we made comparisons between and within lobes to determine the uniformity of collagen deposition, which in turn informed experimental sampling methods for histological, biochemical, and gene expression analyses. Gene expression analyses conducted with animals stratified by disease severity led to the identification of several genes for which expression highly correlated with the histological assessment of fibrosis. Importantly, we have established a biopsy method allowing assessment of disease progression. Mice subjected to liver biopsy recovered well from the procedure compared with sham-operated controls with no apparent effect on liver function. Tissue obtained by biopsy was sufficient for gene and protein expression analyses, providing the opportunity to establish an objective method of assessing liver pathology before subjecting animals to treatment. The improved assessment techniques and the observation that mice fed the high-fat diet exhibit many clinically relevant characteristics of NASH establish a preclinical model for identifying pharmacological interventions with greater likelihood of translating to the clinic.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Transcriptoma
2.
Am J Physiol Gastrointest Liver Physiol ; 302(8): G762-72, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22268099

RESUMO

These preclinical studies aimed to 1) increase our understanding the dietary induction of nonalcoholic steatohepatitis (NASH), and, 2) further explore the utility and mechanisms of glucagon-like peptide-1 receptor (GLP-1R) agonism in NASH. We compared the effects of a high trans-fat (HTF) or high lard fat (HLF) diet on key facets of nonalcoholic fatty liver disease (NAFLD)/NASH in Lep(ob)/Lep(ob) and C57BL6J (B6) mice. Although HLF-fed mice experienced overall greater gains in weight and adiposity, the addition of trans-fat better mirrored pathophysiological features of NASH (e.g., hepatomegaly, hepatic lipid, and fibrosis). Administration of AC3174, an exenatide analog, and GLP-1R agonist to Lep(ob)/Lep(ob) and B6 ameliorated hepatic endpoints in both dietary models. Next, we assessed whether AC3174-mediated improvements in diet-induced NASH were solely due to weight loss in HTF-fed mice. AC3174-treatment significantly reduced body weight (8.3%), liver mass (14.2%), liver lipid (12.9%), plasma alanine aminotransferase, and triglycerides, whereas a calorie-restricted, weight-matched group demonstrated only modest nonsignificant reductions in liver mass (9%) and liver lipid (5.1%) relative to controls. Treatment of GLP-1R-deficient (GLP-1RKO) mice with AC3174 had no effect on body weight, adiposity, liver or plasma indices pointing to the GLP-1R-dependence of AC3174's effects. Interestingly, the role of endogenous GLP-1Rs in NASH merits further exploration as the GLP-1RKO model was protected from the deleterious hepatic effects of HTF. Our pharmacological data further support the clinical evaluation of the utility of GLP-1R agonists for treatment of NASH.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Peptídeos/uso terapêutico , Receptores de Glucagon/agonistas , Animais , Composição Corporal/fisiologia , Peso Corporal/efeitos dos fármacos , Dieta , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Determinação de Ponto Final , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Expressão Gênica/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hormônios/sangue , Leptina/genética , Lipídeos/química , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica , Receptores de Glucagon/genética , Ácidos Graxos trans/farmacologia , Redução de Peso/efeitos dos fármacos
3.
J Comp Neurol ; 521(10): 2235-61, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23238833

RESUMO

Glucagon-like-peptide 1 (GLP-1) is expressed not only in gut endocrine cells, but also in cells in the caudal brainstem and taste buds. To better understand the functions of central GLP-1, GLP-1 expression was immunohistochemically profiled in normal rat brain and its distribution correlated with FOS induction following systemic administration of a GLP-1 receptor agonist, exendin-4. In the present study, only a small number of GLP-1-immunoreactive cell bodies were observed in the nucleus of the solitary tract (NTS). However, these neurons send abundant projections to other regions of the brain, in particular the forebrain, including the paraventricular and dorsomedial nuclei of the hypothalamus, the central nucleus of the amygdala, the oval nucleus of the bed nuclei of the stria terminalis, and the paraventricular nucleus of the thalamus. Intraperitoneal administration of exendin-4 resulted in extensive FOS expression in areas of the forebrain and the hindbrain. In the forebrain, FOS expression was largely confined to regions where a high density of GLP-1-immunoreactive terminals was also localized. The majority of GLP-1-immunoreactive cells in the NTS were not FOS-positive. FOS-positive cells appeared to represent a different population from those expressing GLP-1. Thus, GLP-1-containing neurons in the brainstem may not be involved in receiving and relaying to other regions of the brain the physiological signals of prandial GLP-1 secreted by intestinal L-cells. Projections of GLP-1-containing neurons to the distinctive structures in the forebrain imply that central GLP-1 may play an important role in the behavioral and metabolic integration of autonomic control and arousal in the rat.


Assuntos
Encéfalo/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Animais , Área Postrema/efeitos dos fármacos , Área Postrema/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Exenatida , Expressão Gênica/efeitos dos fármacos , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Proteínas Oncogênicas v-fos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Peçonhas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA