Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Food Microbiol ; 120: 104480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431326

RESUMO

Biofilms are central to microbial life because of the advantage that this mode of life provides, whereas the planktonic form is considered to be transient in the environment. During the winemaking process, grape must and wines host a wide diversity of microorganisms able to grow in biofilm. This is the case of Brettanomyces bruxellensis considered the most harmful spoilage yeast, due to its negative sensory effect on wine and its ability to colonise stressful environments. In this study, the effect of different biotic and abiotic factors on the bioadhesion and biofilm formation capacities of B. bruxellensis was analyzed. Ethanol concentration and pH had negligible effect on yeast surface properties, pseudohyphal cell formation or bioadhesion, while the strain and genetic group factors strongly modulated the phenotypes studied. From a biotic point of view, the presence of two different strains of B. bruxellensis did not lead to a synergistic effect. A competition between the strains was rather observed during biofilm formation which seemed to be driven by the strain with the highest bioadhesion capacity. Finally, the presence of wine bacteria reduced the bioadhesion of B. bruxellensis. Due to biofilm formation, O. oeni cells were observed attached to B. bruxellensis as well as extracellular matrix on the surface of the cells.


Assuntos
Brettanomyces , Vinho , Saccharomyces cerevisiae , Microbiologia de Alimentos , Brettanomyces/metabolismo , Vinho/microbiologia
2.
Mol Ecol ; 32(10): 2374-2395, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35318747

RESUMO

Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g., winemaking, bioethanol production) or as a beneficial microorganism (e.g., production of specific beers, kombucha). In addition to its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the coexistence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g., nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.


Assuntos
Brettanomyces , Vinho , Humanos , Saccharomyces cerevisiae , Vinho/análise , Brettanomyces/genética , Brettanomyces/metabolismo , Genômica , Fermentação
3.
Food Microbiol ; 112: 104217, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906300

RESUMO

Brettanomyces bruxellensis is the most damaging spoilage yeast in the wine industry because of its negative impact on the wine organoleptic qualities. The strain persistence in cellars over several years associated with recurrent wine contamination suggest specific properties to persist and survive in the environment through bioadhesion phenomena. In this work, the physico-chemical surface properties, morphology and ability to adhere to stainless steel were studied both on synthetic medium and on wine. More than 50 strains representative of the genetic diversity of the species were considered. Microscopy techniques made it possible to highlight a high morphological diversity of the cells with the presence of pseudohyphae forms for some genetic groups. Analysis of the physico-chemical properties of the cell surface reveals contrasting behaviors: most of the strains display a negative surface charge and hydrophilic behavior while the Beer 1 genetic group has a hydrophobic behavior. All strains showed bioadhesion abilities on stainless steel after only 3 h with differences in the concentration of bioadhered cells ranging from 2.2 × 102 cell/cm2 to 7.6 × 106 cell/cm2. Finally, our results show high variability of the bioadhesion properties, the first step in the biofilm formation, according to the genetic group with the most marked bioadhesion capacity for the beer group.


Assuntos
Brettanomyces , Vinho , Microbiologia de Alimentos , Aço Inoxidável/análise , Brettanomyces/metabolismo , Vinho/análise , Saccharomyces cerevisiae
4.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408773

RESUMO

In vitro culture of flax (Linum usitatissimum L.) was exposed to chitosan oligosaccharides (COS) in order to investigate the effects on the growth and secondary metabolites content in roots and shoots. COS are fragments of chitosan released from the fungal cell wall during plant-pathogen interactions. They can be perceived by the plant as pathogen-associated signals, mediating local and systemic innate immune responses. In the present study, we report a novel COS oligosaccharide fraction with a degree of polymerization (DP) range of 2-10, which was produced from fungal chitosan by a thermal degradation method and purified by an alcohol-precipitation process. COS was dissolved in hydroponic medium at two different concentrations (250 and 500 mg/L) and applied to the roots of growing flax seedlings. Our observations indicated that the growth of roots and shoots decreased markedly in COS-treated flax seedlings compared to the control. In addition, the results of a metabolomics analysis showed that COS treatment induced the accumulation of (neo)lignans locally at roots, flavones luteolin C-glycosides, and chlorogenic acid in systemic responses in the shoots of flax seedlings. These phenolic compounds have been previously reported to exhibit a strong antioxidant and antimicrobial activities. COS oligosaccharides, under the conditions applied in this study (high dose treatment with a much longer exposure time), can be used to indirectly trigger metabolic response modifications in planta, especially secondary metabolism, because during fungal pathogen attack, COS oligosaccharides are among the signals exchanged between the pathogen and host plant.


Assuntos
Quitosana , Linho , Parede Celular/metabolismo , Quitosana/farmacologia , Linho/metabolismo , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Metabolismo Secundário , Plântula/metabolismo
5.
Food Microbiol ; 92: 103577, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950161

RESUMO

Wine is generally considered as hostile medium in which spoilage microbes have to manage with many abiotic factors among which low nutrient content. Wines elaborated in 8 wineries were sampled during the first summer of aging over two consecutive vintages, and analysed for carbohydrate composition. This revealed the systematic presence of many carbohydrates including those useful for the spoilage yeast Brettanomyces bruxellensis. However, during the first summer of aging, the changes in wine carbohydrate composition were low and it was difficult to assess how much carbohydrate composition contributed to wine spoilage by B. bruxellensis. Subsequent laboratory experiments in inoculated wines showed that the sugars preferentially consumed in wine by the spoilage yeast are d-glucose, d-fructose, and trehalose, whatever the yeast strain considered. The addition of these sugars to red wines accelerates the yeast growth and the volatile phenols formation. Although probably not the only promoting factor, the presence of high amounts of metabolisable sugars thus really increases the risk of "brett" spoilage.


Assuntos
Brettanomyces/isolamento & purificação , Carboidratos/química , Contaminação de Alimentos/análise , Vinho/microbiologia , Brettanomyces/genética , Brettanomyces/crescimento & desenvolvimento , Brettanomyces/metabolismo , Metabolismo dos Carboidratos , Fermentação , Microbiologia de Alimentos , Vinho/análise
6.
Food Microbiol ; 87: 103379, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948620

RESUMO

Brettanomyces bruxellensis is a yeast species found in many fermented matrices. A high level of genetic diversity prevails in this species and was recently connected with tolerance to sulfur dioxide, the main preservative used in wine. We therefore examine other phenotypes that may modulate the ability of the species to spoil wine, in a selection of representative strains. The species shows a fairly high homogeneity with respect to the carbohydrates that can support growth, but more diverse behaviors regarding tolerance to low pH or ethanol. Thought no clear link can be drawn with genotype, some strains appear more tolerant than the others, mainly in the AWRI1499 like genetic group. Volatile phenol production is ubiquitous within the species, independent from yeast growth profile and not affected by the nature of the growth substrate. The specific production. n rate of volatile phenol production raises in case of increased aeration. It is little affected by pH decrease until 3.0 or by ethanol concentration increase up to 12% vol, but it decreased in case of increased constraint (pH < 3.0, Ethanol ≥14% vol) or combination of constraints. All the strain studied have thus the ability to spoil wine but some outstanding dangerous strains can even spoil the wine with high level of constrainst.


Assuntos
Brettanomyces/isolamento & purificação , Vinho/microbiologia , Brettanomyces/efeitos dos fármacos , Brettanomyces/crescimento & desenvolvimento , Brettanomyces/metabolismo , Etanol/metabolismo , Conservantes de Alimentos/farmacologia , Genótipo , Concentração de Íons de Hidrogênio , Fenótipo , Dióxido de Enxofre/farmacologia , Vinho/análise
7.
BMC Genomics ; 17(1): 984, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905883

RESUMO

BACKGROUND: Oenococcus oeni is the bacterial species that drives malolactic fermentation in most wines. Several studies have described a high intraspecific diversity regarding carbohydrate degradation abilities but the link between the phenotypes and the genes and metabolic pathways has been poorly described. RESULTS: A collection of 41 strains whose genomic sequences were available and representative of the species genomic diversity was analyzed for growth on 18 carbohydrates relevant in wine. The most frequently used substrates (more than 75% of the strains) were glucose, trehalose, ribose, cellobiose, mannose and melibiose. Fructose and L-arabinose were used by about half the strains studied, sucrose, maltose, xylose, galactose and raffinose were used by less than 25% of the strains and lactose, L-sorbose, L-rhamnose, sorbitol and mannitol were not used by any of the studied strains. To identify genes and pathways associated with carbohydrate catabolic abilities, gene-trait matching and a careful analysis of gene mutations and putative complementation phenomena were performed. CONCLUSIONS: For most consumed sugars, we were able to propose putatively associated metabolic pathways. Most associated genes belong to the core genome. O. oeni appears as a highly specialized species, ideally suited to fermented fruit juice and more specifically to wine for a subgroup of strains.


Assuntos
Metabolismo dos Carboidratos/genética , Genoma Bacteriano , Oenococcus/genética , Hibridização Genômica Comparativa , Redes e Vias Metabólicas/genética , Monossacarídeos/metabolismo , Fenótipo , Sinais Direcionadores de Proteínas/genética , Vinho/microbiologia
8.
Food Microbiol ; 53(Pt A): 10-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611165

RESUMO

Oenococcus oeni (O. oeni), which is the main species that drives malolactic fermentation (FML), an essential step for wine microbial stabilization and quality improvement, is known to produce exopolysaccharides (EPS). Depending on the strain, these EPS can be soluble, remain attached to the cell or both. In the present study, fourteen strains were examined for eps gene content and EPS production capacities. Cell-linked and soluble heteropolysaccharides made of glucose, galactose and rhamnose, soluble ß-glucan, and soluble dextran or levan were found, depending on the strain. The protective potential of either cell-linked heteropolysaccharides or dextrans produced was then studied during freeze drying of the bacterial strains.


Assuntos
Oenococcus/química , Oenococcus/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Cápsulas Bacterianas/química , Cápsulas Bacterianas/ultraestrutura , Fermentação/fisiologia , Liofilização , Genômica , Microscopia Eletrônica de Transmissão , Fenótipo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/isolamento & purificação , Vinho/microbiologia
9.
Appl Environ Microbiol ; 79(11): 3371-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23524676

RESUMO

Oenococcus oeni, the lactic acid bacterium primarily responsible for malolactic fermentation in wine, is able to grow on a large variety of carbohydrates, but the pathways by which substrates are transported and phosphorylated in this species have been poorly studied. We show that the genes encoding the general phosphotransferase proteins, enzyme I (EI) and histidine protein (HPr), as well as 21 permease genes (3 isolated ones and 18 clustered into 6 distinct loci), are highly conserved among the strains studied and may form part of the O. oeni core genome. Additional permease genes differentiate the strains and may have been acquired or lost by horizontal gene transfer events. The core pts genes are expressed, and permease gene expression is modulated by the nature of the bacterial growth substrate. Decryptified O. oeni cells are able to phosphorylate glucose, cellobiose, trehalose, and mannose at the expense of phosphoenolpyruvate. These substrates are present at low concentrations in wine at the end of alcoholic fermentation. The phosphotransferase system (PTS) may contribute to the perfect adaptation of O. oeni to its singular ecological niche.


Assuntos
Adaptação Biológica/genética , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Proteínas de Membrana Transportadoras/genética , Oenococcus/enzimologia , Fosfotransferases/genética , Vinho/microbiologia , Análise de Variância , Sequência de Bases , Dados de Sequência Molecular , Oenococcus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
10.
Appl Environ Microbiol ; 78(6): 1765-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247154

RESUMO

Propionibacterium freudenreichii is a bacterial species found in Swiss-type cheeses and is also considered for its health properties. The main claimed effect is the bifidogenic property. Some strains were shown recently to display other interesting probiotic potentialities such as anti-inflammatory properties. About 30% of strains were shown to produce a surface exopolysaccharide (EPS) composed of (1→3,1→2)-ß-D-glucan due to a single gene named gtfF. We hypothesized that functional properties of P. freudenreichii strains, including their anti-inflammatory properties, could be linked to the presence of ß-glucan. To evaluate this hypothesis, gtfF genes of three ß-glucan-producing strains were disrupted. These knockout (KO) mutants were complemented with a plasmid harboring gtfF (KO-C mutants). The absence of ß-glucan in KO mutants was verified by immunological detection and transmission electron microscopy. We observed by atomic force microscopy that the absence of ß-glucan in the KO mutant dramatically changed the cell's topography. The capacity to adhere to polystyrene surface was increased for the KO mutants compared to wild-type (WT) strains. Anti-inflammatory properties of WT strains and mutants were analyzed by stimulation of human peripheral blood mononuclear cells (PBMCs). A significant increase of the anti-inflammatory interleukin-10 cytokine production by PBMCs was measured in the KO mutants compared to WT strains. For one strain, the role of ß-glucan in mice gut persistence was assessed, and no significant difference was observed between the WT strain and its KO mutant. Thus, ß-glucan appears to partly hide the anti-inflammatory properties of P. freudenreichii; which is an important result for the selection of probiotic strains.


Assuntos
Glicosiltransferases/metabolismo , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Propionibacterium/imunologia , Propionibacterium/metabolismo , beta-Glucanas/imunologia , beta-Glucanas/metabolismo , Animais , Aderência Bacteriana , Trato Gastrointestinal/microbiologia , Deleção de Genes , Teste de Complementação Genética , Glicosiltransferases/genética , Humanos , Interleucina-10/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Propionibacterium/ultraestrutura
11.
Materials (Basel) ; 15(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35207915

RESUMO

In this present work, fungal nanochitosans, with very interesting particle size distribution of 22 µm, were efficiently generated in high-yield production using a high-pressure water jet system (Star Burst System, Sugino, Japan) after 10 passes of mechanical treatment under high pressure. The specific characterization of fungal chitosan nanofibers suspensions in water revealed a high viscosity of 1450 mPa.s and an estimated transparency of 43.5% after 10 passes of fibrillation mechanical treatment. The mechanical characterization of fungal nanochitosan (NC) film are very interesting for medical applications with a Young's modulus (E), a tensile strength (TS), and elongation at break (e%) estimated at 2950 MPa, 50.5 MPa, and 5.5%, respectively. Furthermore, we exhibited that the fungal nanochitosan (NC) film presented very good long-term antioxidant effect (reached 82.4% after 96 h of contact with DPPH radical solution) and very interesting antimicrobial activity when the nanochitosan (NC) fibers are mainly activated as NC-NH3+ form at the surface of the film with 45% reduction and 75% reduction observed for S. aureus (Gram-positive) and E. coli (Gram-negative), respectively, after 6 h of treatment. These promising antimicrobial and antioxidant activities indicated the high potential of valorization toward biomedical applications.

12.
Int J Food Microbiol ; 381: 109907, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36063684

RESUMO

Chitosan is an active highly charged polysaccharide that has initially been developed in oenology to eliminate the spoilage yeast B. bruxellensis. However, different forms of chitosan exist, some complying with EU regulation for their use in wines, others not. Moreover, with the trend in oenology of limiting SO2, more and more questions arise as to the impact of chitosan on other microorganisms of the grape and wine environment. We investigated the antimicrobial efficiency of chitosan on a large oenological microbial collection, englobing technological as well as spoilage microorganisms. Results show that most species are affected at least transiently. Furthermore, a high variability prevails within most species and sensitive, intermediate and tolerant strains can be observed. This study also highlights different efficiencies depending on the wine parameters or the winemaking stage, giving important indications on which winemaking issues can be solved using chitosan. Chitosan treatment does not seem to be appropriate to limit the musts microbial pressure and Saccharomyces cerevisiae cannot be stopped during alcoholic fermentation, especially in sweet wines. Likewise, acetic acid bacteria are poorly impacted by chitosan. After alcoholic fermentation, chitosan can efficiently limit non-Saccharomyces yeast and lactic acid bacteria but special care should be given as to whether malolactic fermentation is wanted or not. Indeed, O. oeni can be severely impacted by chitosan, even months after treatment. Finally, this study highlights the crucial importance of the chitosan type used in its efficiency towards microbial stabilization. While a high molecular weight chitosan has limited antimicrobial properties, a chitosan with a much lower one, complying with EU and OIV regulation and specifications for its use in wine is much more efficient.


Assuntos
Anti-Infecciosos , Quitosana , Vitis , Vinho , Anti-Infecciosos/farmacologia , Quitosana/farmacologia , Fermentação , Saccharomyces cerevisiae , Vitis/microbiologia , Vinho/microbiologia
13.
Foods ; 10(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34574312

RESUMO

Lactic acid bacteria (LAB) from fermented beverages such as wine, cider and beer produce a wide range of exopolysaccharides (EPS) through multiple biosynthetic pathways. These extracellular polysaccharides constitute key elements for bacterial species adaptation to such anthropic processes. In the food industry, LAB polysaccharides have been widely studied for their rheological, functional and nutritional properties; however, these have been poorly studied in wine, beer and cider until recently. In this review, we have gathered the information available on these specific polysaccharide structure and, biosynthetic pathways, as well as the physiology of their production. The genes associated with EPS synthesis are also presented and compared. Finally, the possible role of EPS for bacterial survival and spread, as well as the risks or possible benefits for the winemaker and the wine lover, are discussed.

14.
Front Microbiol ; 11: 571067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013803

RESUMO

Brettanomyces bruxellensis is the main spoilage microbial agent in red wines. The use of fungal chitosan has been authorized since 2009 as a curative treatment to eliminate this yeast in conventional wines and in 2018 in organic wines. As this species is known to exhibit great genetic and phenotypic diversity, we examined whether all the strains responded the same way to chitosan treatment. A collection of 53 strains of B. bruxellensis was used. In the conditions of the reference test, all were at least temporarily affected by the addition of chitosan to wine, with significant decrease of cultivable population. Some (41%) were very sensitive and no cultivable yeast was detected in wine or lees after 3 days of treatment, while others (13%) were tolerant and, after a slight drop in cultivability, resumed growth between 3 and 10 days and remained able to produce spoilage compounds. There were also many strains with intermediate behavior. The strain behavior was only partially linked to the strain genetic group. This behavior was little modulated by the physiological state of the strain or the dose of chitosan used (within the limits of the authorized doses). On the other hand, for a given strain, the sensitivity to chitosan treatment was modulated by the chitosan used and by the properties of the wine in which the treatment was carried out.

15.
PLoS One ; 14(12): e0222749, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851678

RESUMO

Brettanomyces bruxellensis is the main wine spoiler yeast all over the world, yet the structure of the populations associated with winemaking remains elusive. In this work, we considered 1411 wine isolates from 21 countries that were genotyped using twelve microsatellite markers. We confirmed that B. bruxellensis isolates from wine environments show high genetic diversity, with 58 and 42% of putative triploid and diploid individuals respectively distributed in 5 main genetic groups. The distribution in the genetic groups varied greatly depending on the country and/or the wine-producing region. However, the two possible triploid wine groups showing sulfite resistance/tolerance were identified in almost all regions/countries. Genetically identical isolates were also identified. The analysis of these clone groups revealed that a given genotype could be isolated repeatedly in the same winery over decades, demonstrating unsuspected persistence ability. Besides cellar residency, a great geographic dispersal was also evidenced, with some genotypes isolated in wines from different continents. Finally, the study of old isolates and/or isolates from old vintages revealed that only the diploid groups were identified prior 1990 vintages. The putative triploid groups were identified in subsequent vintages, and their proportion has increased steadily these last decades, suggesting adaptation to winemaking practices such as sulfite use. A possible evolutionary scenario explaining these results is discussed.


Assuntos
Brettanomyces/genética , Brettanomyces/isolamento & purificação , DNA Fúngico/análise , Microbiologia de Alimentos , Vinho/análise , Brettanomyces/crescimento & desenvolvimento , DNA Fúngico/genética , Fermentação , Genótipo , Geografia , Vinho/microbiologia
16.
Appl Environ Microbiol ; 74(13): 4079-90, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18469121

RESUMO

"Ropiness" is a bacterial alteration in wines, beers, and ciders, caused by beta-glucan-synthesizing pediococci. A single glucosyltransferase, Gtf, controls ropy polysaccharide synthesis. In this study, we show that the corresponding gtf gene is also present on the chromosomes of several strains of Oenococcus oeni isolated from nonropy wines. gtf is surrounded by mobile elements that may be implicated in its integration into the chromosome of O. oeni. gtf is expressed in all the gtf(+) strains, and beta-glucan is detected in the majority of these strains. Part of this beta-glucan accumulates around the cells forming a capsule, while the other part is liberated into the medium together with heteropolysaccharides. Most of the time, this polymer excretion does not lead to ropiness in a model medium. In addition, we show that wild or recombinant bacterial strains harboring a functional gtf gene (gtf(+)) are more resistant to several stresses occurring in wine (alcohol, pH, and SO(2)) and exhibit increased adhesion capacities compared to their gtf mutant variants.


Assuntos
Glucosiltransferases/genética , Cocos Gram-Positivos/enzimologia , Pediococcus/enzimologia , Aderência Bacteriana , Glucosiltransferases/metabolismo , Cocos Gram-Positivos/genética , Resposta ao Choque Térmico , Microbiologia Industrial , Dados de Sequência Molecular , Mutação , Pediococcus/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vinho/microbiologia , beta-Glucanas/metabolismo
17.
Int J Food Microbiol ; 125(3): 252-8, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18524407

RESUMO

In the dairy industry, exopolysaccharides (EPS) contribute to improving the texture and viscosity of cheese and yoghurt and also receive increasing attention because of their beneficial properties for health. For lactic acid bacteria, the production of EPS is well studied. However, for dairy propionibacteria the biosynthesis of EPS is poorly documented. A polysaccharide synthase-encoding gene was identified in the genome of Propionibacterium freudenreichii subsp. shermanii TL 34 (CIP 103027). This gene best aligns with Tts, the polysaccharide synthase gene of Streptococcus pneumoniae type 37 that is responsible for the production of a beta-glucan capsular polysaccharide. PCR amplification showed the presence of an internal fragment of this gene in twelve strains of P. freudenreichii subsp. shermanii with a ropy phenotype in YEL+ medium. The gene sequence is highly conserved, as less than 1% of nucleotides differed among the 10 strains containing the complete gtf gene. The same primers failed to detect the gene in Propionibacterium acidipropionici strain TL 47, which is known to excrete exopolysaccharides in milk. The presence of (1-->3, 1-->2)-beta-d-glucan capsule was demonstrated for 7 out of 12 strains by agglutination with a S. pneumoniae-type 37-specific antiserum. The presence of mRNA corresponding to the gene was detected by RT-PCR in three strains at both exponential and stationary growth phases. This work represents the first identification of a polysaccharide synthase gene of P. freudenreichii, and further studies will be undertaken to elucidate the role of capsular EPS.


Assuntos
Laticínios/microbiologia , Microbiologia de Alimentos , Glucosiltransferases/genética , Polissacarídeos Bacterianos/biossíntese , Propionibacterium/enzimologia , beta-Glucanas/metabolismo , Testes de Aglutinação , Sequência de Aminoácidos , Amplificação de Genes , Dados de Sequência Molecular , Propionibacterium/genética , Alinhamento de Sequência , Especificidade da Espécie
18.
Front Microbiol ; 9: 1276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946314

RESUMO

Oenococcus oeni is the lactic acid bacterium that most commonly drives malolactic fermentation (MLF) in wine. Though the importance of MLF in terms of wine microbial stability and sensory improvement is well established, it remains a winemaking step not so easy to control. O. oeni displays many adaptation tools to resist the harsh wine conditions which explain its natural dominance at this stage of winemaking. Previous findings showed that capsular polysaccharides and endogenous produced dextran increased the survival rate and the conservation time of malolactic starters. In this paper, we showed that exopolysaccharides specific production rates were increased in the presence of single stressors relevant to wine (pH, ethanol). The transcription of the associated genes was investigated in distinct O. oeni strains. The conditions in which eps genes and EPS synthesis were most stimulated were then evaluated for the production of freeze dried malolactic starters, for acclimation procedures and for MLF efficiency. Sensory analysis tests on the resulting wines were finally performed.

19.
Carbohydr Polym ; 179: 10-18, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111031

RESUMO

A gene encoding a novel dextransucrase was identified in the genome of Oenococcus kitaharae DSM17330 and cloned into E. coli. With a kcat of 691s-1 and a half-life time of 111h at 30°C, the resulting recombinant enzyme -named DSR-OK- stands as one of the most efficient and stable dextransucrase characterized to date. From sucrose, this enzyme catalyzes the synthesis of a quasi linear dextran with a molar mass higher than 1×109g·mol-1 that presents uncommon rheological properties such as a higher viscosity than that of the most industrially used dextran from L. mesenteroides NRRL-B-512F, a yield stress that was never described before for any type of dextran, as well as a gel-like structure. All these properties open the way to a vast array of new applications in health, food/feed, bulk or fine chemicals fields.


Assuntos
Dextranos/biossíntese , Glucosiltransferases/metabolismo , Oenococcus/enzimologia , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Biocatálise , Configuração de Carboidratos , Bases de Dados de Proteínas , Glucosiltransferases/genética , Oenococcus/genética , Proteínas Recombinantes/genética , Sacarose/química , Sacarose/metabolismo , Viscosidade
20.
Sci Rep ; 8(1): 4136, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515178

RESUMO

Brettanomyces bruxellensis is a unicellular fungus of increasing industrial and scientific interest over the past 15 years. Previous studies revealed high genotypic diversity amongst B. bruxellensis strains as well as strain-dependent phenotypic characteristics. Genomic assemblies revealed that some strains harbour triploid genomes and based upon prior genotyping it was inferred that a triploid population was widely dispersed across Australian wine regions. We performed an intraspecific diversity genotypic survey of 1488 B. bruxellensis isolates from 29 countries, 5 continents and 9 different fermentation niches. Using microsatellite analysis in combination with different statistical approaches, we demonstrate that the studied population is structured according to ploidy level, substrate of isolation and geographical origin of the strains, underlying the relative importance of each factor. We found that geographical origin has a different contribution to the population structure according to the substrate of origin, suggesting an anthropic influence on the spatial biodiversity of this microorganism of industrial interest. The observed clustering was correlated to variable stress response, as strains from different groups displayed variation in tolerance to the wine preservative sulfur dioxide (SO2). The potential contribution of the triploid state for adaptation to industrial fermentations and dissemination of the species B. bruxellensis is discussed.


Assuntos
Brettanomyces , Diploide , Genoma Fúngico , Genótipo , Triploidia , Vinho/microbiologia , Austrália , Brettanomyces/genética , Brettanomyces/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA