Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Chem Biodivers ; 20(1): e202200631, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423339

RESUMO

This study aimed to determine the phenolic compounds profile, antioxidant potential and cytotoxicity of extracts and fractions of Caesalpinia palmeri. Methanolic extracts were generated from C. palmeri berries, stems and flowers. The latter was subjected to liquid-liquid partition, obtaining hexane, ethyl acetate and residues fractions. Results showed that the flower extract and ethyl acetate fraction had a larger concentration of phenolic compounds (148.9 and 307.9 mg GAE/g, respectively), being ellagic acid (6233.57 and 19550.08 µg/g, respectively), quercetin-3-ß-glycoside (3023.85 and 8952.55 µg/g, respectively) and gallic acid (2212.98 and 8422.34 µg/g, respectively) the most abundant compounds. Flower extract and ethyl acetate fraction also presented the highest antioxidant capacity on all tested methods (DPPH, ABTS, ORAC and FRAP) and low cytotoxicity against ARPE-19 cells (IC50 >170 µg/mL). C. palmeri possessed high antioxidant potential, associated with the presence of phenolic compounds and low cytotoxicity, suggesting that they could represent an option to counter oxidative stress.


Assuntos
Antioxidantes , Caesalpinia , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Acetatos
2.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771113

RESUMO

Obesity is a serious health problem worldwide, since it is associated with multiple metabolic disorders and complications such as cardiovascular disease, type 2 diabetes, fatty liver disease and overall metabolic dysfunction. Dysregulation of the hunger-satiety pathway, which includes alterations of central and peripheral signaling, explains some forms of obesity by favoring hyperphagia and weight gain. The present work comprehensively summarizes the mechanisms by which naringenin (NAR), a predominant flavanone in citrus fruits, could modulate the main pathways associated with the development of obesity and some of its comorbidities, such as oxidative stress (OS), inflammation, insulin resistance (IR) and dyslipidemia, as well as the role of NAR in modulating the secretion of enterohormones of the satiety pathway and its possible antiobesogenic effect. The results of multiple in vitro and in vivo studies have shown that NAR has various potentially modulatory biological effects against obesity by countering IR, inflammation, OS, macrophage infiltration, dyslipidemia, hepatic steatosis, and adipose deposition. Likewise, NAR is capable of modulating peptides or peripheral hormones directly associated with the hunger-satiety pathway, such as ghrelin, cholecystokinin, insulin, adiponectin and leptin. The evidence supports the use of NAR as a promising alternative to prevent overweight and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Flavanonas , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Diabetes Mellitus Tipo 2/complicações , Obesidade/metabolismo , Flavanonas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/complicações , Hepatopatia Gordurosa não Alcoólica/complicações
3.
Dig Dis Sci ; 66(10): 3270-3289, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33111173

RESUMO

The role of non-energy-yielding nutrients on health has been meticulously studied, and the evidence shows that a compound can exert significant effects on health even if not strictly required by the organism. Phenolic compounds are among the most widely studied molecules that fit this description; they are found in plants as secondary metabolites and are not required by humans for growth or development, but they can influence a wide array of processes that modulate health across multiple organs and systems. The lower gastrointestinal tract is a prime site of action of phenolic compounds, namely, by their effects on gut microbiota and colonic health. As with humans, phenolic compounds are not required by most bacteria but can be substrates of others; in fact, some phenolic compounds exert antibacterial actions. A diet rich in phenolic compounds can lead to qualitative and quantitative effects on gut microbiota, thereby inducing indirect health effects in mammals through the action of these microorganisms. Moreover, phenolic compounds may be fermented by the gut microbiota, thereby modulating the compounds bioactivity. In the colon, phenolic compounds promote anti-inflammatory, anti-oxidant and antiproliferative actions. The aim of the present review is to highlight the role of phenolic compounds on maintaining or restoring a healthy microbiota and overall colonic health. Mechanisms of action that substantiate the reported evidence will also be discussed.


Assuntos
Bactérias/efeitos dos fármacos , Colo/microbiologia , Colo/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fenóis/farmacologia , Bactérias/classificação , Dieta , Humanos
4.
Cell Biochem Funct ; 39(5): 688-698, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33821520

RESUMO

The meninges shield the nervous system from diverse, rather harmful stimuli and pathogens from the periphery. This tissue is composed of brain endothelial cells (BECs) that express diverse ion channels and chemical-transmitter receptors also expressed by neurons and glial cells to communicate with each other. However, information about the effects of ATP and angiotensin II on BECs is scarce, despite their essential roles in blood physiology. This work investigated in vitro if BECs from the meninges from rat forebrain respond to ATP, angiotensin II and high extracellular potassium, with intracellular calcium mobilizations and its second messenger-associated pathways. We found that in primary BEC cultures, both ATP and angiotensin II produced intracellular calcium responses linked to the activation of inositol trisphosphate receptors and ryanodine receptors, which led to calcium release from intracellular stores. We also used RT-PCR to explore what potassium channel subunits are expressed by primary BEC cultures and freshly isolated meningeal tissue, and which might be linked to the observed effects. We found that BECs mainly expressed the inward rectifier potassium channel subunits Kir1.1, Kir3.3, Kir 4.1 and Kir6.2. This study contributes to the understanding of the functions elicited by ATP and angiotensin II in BECs from rat meninges. SIGNIFICANCE OF THE STUDY: Brain endothelial cells (BECs) express diverse ion channels and membrane receptors, which they might use to communicate with neurons and glia. This work investigated in vitro, if BECs from the rat forebrain respond to angiotensin II and ATP with intracellular calcium mobilizations. We found that these cells did respond to said substances with intracellular calcium mobilizations linked to inositol trisphosphate and ryanodine receptor activation, which led to calcium release from intracellular stores. These findings are important because they might uncover routes of active communication between brain cells and endothelial cells.


Assuntos
Trifosfato de Adenosina/farmacologia , Angiotensina II/farmacologia , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Potássio/farmacologia , Prosencéfalo/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Masculino , Canais de Potássio/genética , Canais de Potássio/metabolismo , Prosencéfalo/efeitos dos fármacos , Ratos , Ratos Wistar
5.
J Sci Food Agric ; 101(2): 497-504, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32648261

RESUMO

BACKGROUND: Oxidative stress has been implicated in the pathogenesis and progression of diabetes mellitus. Both can damage the brain. Mango and its by-products are sources of bioactive compounds with antioxidant properties. We hypothesized that mango cv. 'Ataulfo' peel and pulp mitigate oxidative stress in the brain of streptozotocin-induced diabetic rats. RESULTS: Twenty-four male Wistar rats were divided into four groups: control, untreated diabetic (UD), diabetic treated with a mango-supplemented diet (MTD), and diabetic pretreated with a mango-supplemented diet (MPD). The rats were fed the different diets for 4 weeks after diabetes induction (MTD), or 2 weeks before and 4 weeks after induction (MPD). After the intervention, serum and brain (cerebellum and cortex) were collected to evaluate gene expression, enzyme activity, and redox biomarkers. Superoxide dismutase 2 (SOD2) expression increased in the cortex of the MTD group, whereas glutathione-S-transferase p1 (GSTp1) expression was higher in the cortex of the MTD group, and cortex and cerebellum of the MPD group. SOD1 activity was higher in the cerebellum and cortex of all diabetic groups, whereas GST activity increased in the cerebellum and cortex of the MPD group. Lipid peroxidation increased in the cerebellum and cortex of the UD group; however, a mango-supplemented diet prevented this increase in both regions, while also mitigating polyphagia and weight loss, and maintaining stable glycemia in diabetic rats. CONCLUSION: We propose that mango exerts potent neuroprotective properties against diabetes-induced oxidative stress. It can be an alternative to prevent and treat biochemical alterations caused by diabetes. © 2020 Society of Chemical Industry.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Mangifera/química , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Glicemia/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Frutas/química , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Estreptozocina , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
6.
Phytother Res ; 33(11): 2996-3007, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31418509

RESUMO

The present study evaluated the contribution of mango fiber (MF) and mango phenolic compounds (MP) to the hepatoprotective effect of freeze-dried mango pulp (FDM) cultivar (cv.) "Ataulfo" diets in high cholesterol/sodium cholate (HCC)-fed rats. Male Wistar rats were fed with a HCC diet for 12 weeks, either untreated, or supplemented with MF, MP, FDM, or a control diet (no HCC; n = 6/group). All mango treatments significantly decreased hepatic cholesterol deposition and altered its fatty acid profile, whereas MF and MP mitigated adipose tissue hypertrophy. MF caused a lower level of proinflammatory cytokines (IL-1α/ß, IFN-γ, TNF-α) whereas FDM increased the anti-inflammatory ones (IL-4, 6, 10). Mango treatments increased catalase (CAT) activity and its mRNA expression; superoxide dismutase (SOD) activity was normalized by MF and FDM, but its activity was unrelated to its hepatic mRNA expression. Changes in CAT and SOD mRNA expression were unrelated to altered Nrf2 mRNA expression. Higher hepatic PPARα and LXRα mRNA levels were found in MP and MF. We concluded that MF and MP are highly bioactive, according to the documented hepatoprotection in HCC-fed rats; their mechanism of action appears to be related to modulating cholesterol and fatty acid metabolism as well as to stimulating the endogenous antioxidant system.


Assuntos
Citoproteção/efeitos dos fármacos , Fibras na Dieta/farmacologia , Fígado/efeitos dos fármacos , Mangifera/química , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fenóis/farmacologia , Animais , Antioxidantes/farmacologia , Colesterol na Dieta/administração & dosagem , Colesterol na Dieta/efeitos adversos , Dieta/efeitos adversos , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Hipercolesterolemia/induzido quimicamente , Hipercolesterolemia/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/metabolismo , Fenóis/isolamento & purificação , Ratos , Ratos Wistar , Colato de Sódio/administração & dosagem , Colato de Sódio/efeitos adversos
7.
J Sci Food Agric ; 99(4): 1604-1612, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30187493

RESUMO

BACKGROUND: Serum lipoproteins are in dynamic equilibrium, partially controlled by the apolipoprotein A1 to apolipoprotein B ratio (APOA1/APOB). Freeze-dried mango pulp (FDM) is a rich source of phenolic compounds (MP) and dietary fiber (MF), although their effects on lipoprotein metabolism have not yet been studied. RESULTS: Thirty male Wistar rats were fed with four different isocaloric diets (3.4 kcal g-1 ) for 12 weeks: control diet, high cholesterol (8 g kg-1 ) + sodium cholate (2 g kg-1 ) diet either alone or supplemented with MF (60 g kg-1 ), MP (1 g kg-1 ) or FDM (50 g kg-1 ). MP and FDM reduced food intake, whereas MF and MP tended to increase serum APOA1/APOB ratio, independently of their hepatic gene expression. This suggests that lipoprotein metabolism was favorably altered by mango bioactives, MP also mitigated the non-alcoholic steatohepatitis that resulted from the intake of this diet. CONCLUSION: We propose that phenolics are the most bioactive components of mango pulp, acting as anti-atherogenic and hepatoprotective agents, with a mechanism of action tentatively based on changes to the main protein components of lipoproteins. © 2018 Society of Chemical Industry.


Assuntos
Apolipoproteína A-I/sangue , Apolipoproteínas B/sangue , Colesterol/metabolismo , Mangifera/metabolismo , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Fenol/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/metabolismo , Colato de Sódio/metabolismo , Animais , Humanos , Fígado/metabolismo , Masculino , Mangifera/química , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fenol/análise , Extratos Vegetais/análise , Ratos , Ratos Wistar
8.
J Food Sci Technol ; 56(4): 2073-2082, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30996441

RESUMO

Fruit ripening induces changes that strongly affect their matrices, and consequently, the bioaccessibility/bioavailability of its phenolic compounds. Flesh from 'slightly' (SR), 'moderately' (MR) and 'fully' (FR) ripe 'Ataulfo' mangoes were physicochemically characterized, and digested in vitro to evaluate how ripening impacts the bioaccessibility/bioavailability of its phenolic compounds. Ripening increased the flesh's pH and total soluble solids, while decreasing citric acid, malic acid and titratable acidity. MR and FR mango phenolics had higher bioaccessibility/bioavailability, which was related to a decreased starch and dietary fiber (soluble and insoluble) content. These results suggest that phenolics are strongly bound to the fruit's matrix of SR mango, but ripening liberates them as the major polysaccharides are hydrolyzed, thus breaking covalent bonds and disrupting carbohydrate-phenolic complexes. There was also a higher release percentage in the gastric digestion phase, as compared to the intestinal. Our data showed that the bioaccessibility/bioavailability of mango phenolics depends on fruit ripening and on digestion phase.

9.
Molecules ; 22(6)2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28556815

RESUMO

Type-2 diabetes mellitus (T2DM) is an endocrine disease related to impaired/absent insulin signaling. Dietary habits can either promote or mitigate the onset and severity of T2DM. Diets rich in fruits and vegetables have been correlated with a decreased incidence of T2DM, apparently due to their high polyphenol content. Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. The present review describes the antidiabetic effects of polyphenols, specifically related to the secretion and effects of insulin and glucagon-like peptide 1 (GLP1), an enteric hormone that stimulates postprandial insulin secretion. The evidence suggests that polyphenols from various sources stimulate L-cells to secrete GLP1, increase its half-life by inhibiting dipeptidyl peptidase-4 (DPP4), stimulate ß-cells to secrete insulin and stimulate the peripheral response to insulin, increasing the overall effects of the GLP1-insulin axis. The glucose-lowering potential of polyphenols has been evidenced in various acute and chronic models of healthy and diabetic organisms. Some polyphenols appear to exert their effects similarly to pharmaceutical antidiabetics; thus, rigorous clinical trials are needed to fully validate this claim. The broad diversity of polyphenols has not allowed for entirely describing their mechanisms of action, but the evidence advocates for their regular consumption.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Polifenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Polifenóis/química , Polifenóis/uso terapêutico
10.
Int J Mol Sci ; 17(7)2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27367676

RESUMO

Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/genética , Polifenóis/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
11.
Biomolecules ; 14(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39062476

RESUMO

The importance of bioactive compounds in agro-industrial by-products of plant origin lies in their direct impacts on human health. These compounds have been shown to possess antioxidant, anti-inflammatory, and antimicrobial properties, contributing to disease prevention and strengthening the immune system. In particular, the antimicrobial action of these compounds emerges as an important tool in food preservation, providing natural alternatives to synthetic preservatives and contributing to combating antimicrobial resistance. Using agro-industrial by-products of plant origin not only addresses the need to reduce waste and promote sustainability but also inaugurates a new era in the formulation of functional foods. From fruit peels to pulps and seeds, these by-products are emerging as essential ingredients in the creation of products that can promote health. Continued research in this area will unveil new applications and properties of these by-products and open doors to a food paradigm in which health and sustainability converge, paving the way to a healthier and more equitable future. The present review presents an overview of our knowledge of agro-industrial by-products and some of their more relevant health-promoting bioactivities.


Assuntos
Anti-Infecciosos , Antioxidantes , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Humanos , Agricultura , Plantas/química
12.
Cell Biochem Biophys ; 82(1): 119-126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37831306

RESUMO

Avocado paste (AP) is the main industrial byproduct of its processing, and retains various phenolic compounds (PCs). PCs are known to normalize the plasma lipid profile, but those from avocado byproducts have been minimally studied. We report the normalizing effects of an AP-derived phenolic extract (PE) on the plasma lipid profile of male Wistar rats. A standard (SD) and high-fat diet (HFD) were formulated, and the same diets were supplemented with 1 g/kg of diet of PE (SD + PE and HFD + PE). Rats were fed these diets during an 8-week period. The HFD induced signs of dyslipidemia, but PE treatment countered the decrease in HDL. Relative mRNA expression (real-time PCR) of the hepatic HDL receptor (SCARB1) increased in both groups (SD + PE and HFD + PE), while the LDR receptor (LDLR) increased in SD + PE group. The mRNA expression of apolipoproteins APOA1 and APOB was unaffected. We conclude that PCs from AP can counter a diet-induced decrease in plasma HDL by acting on the mRNA expression of its hepatic receptor.


Assuntos
Dieta Hiperlipídica , Persea , Ratos , Masculino , Animais , Ratos Wistar , Dieta Hiperlipídica/efeitos adversos , Persea/metabolismo , Fígado/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Foods ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672891

RESUMO

Avocado paste (AP) is an industrial byproduct and a potential source of bioactive compounds, so there is great interest in its valorization. The objective of the present study was to evaluate the effects of adding AP to corn chips regarding their nutritional profile and sensory acceptability. Three AP-supplemented corn chip samples were prepared (C-2%, C-6%, and C-10%), along with a control chip (C), whose total phenolics, flavonoids, antioxidant capacity, proximate composition, minerals, fatty acids, and sensory acceptability were evaluated. Regarding the content of phenolic compounds and flavonoids, significant increases were found between all samples (p < 0.05), particularly between C and C-10% (from 0.93 to 3.56 mg GAE/g dw and 1.17 to 6.61 mg QE/g dw, respectively). Their antioxidant capacity also increased significantly (p < 0.05) with all methods used (FRAP, DPPH, ORAC, and TEAC). Regarding the sensory analysis, no significant differences were found (p > 0.05) between C and C-2% in the parameters of smell, color, flavor, and overall acceptability; however, the texture of C-2% was better evaluated. The C-2% sample also had the highest acceptability; 82% of the participants mentioned that they would buy the C-2%, higher than the rest of the samples. These results suggest the feasibility of adding 2% AP as a strategy to improve the nutritional properties of corn chips without compromising their sensory acceptability; therefore, AP may be used as a food ingredient.

14.
Foods ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231664

RESUMO

Consuming foods of vegetable origin has been shown to exert multiple health-related effects, many of them attributed to their phenolic compounds. These molecules are known for being bioactive across multiple cells and organs, with documented changes in gene expression being commonly reported. Nuclear receptors are signal transducers capable of regulating gene expression in response to endogenous and/or exogenous ligands. Liver X receptor (LXR) and retinoid X receptor (RXR) are two important nuclear receptors that can be acted on by phenolic compounds, thereby modifying gene expression and potentially exerting numerous subsequent bioactivities. The present work summarizes recent evidence of the effects of the phenolic compounds that are exerted by targeting LXR and/or RXR. The data show that, when LXR is being targeted, changes in lipid metabolism are commonly observed, due to its ability to regulate genes relevant to this process. The effects vary widely when RXR is the target since it is involved in processes like cell proliferation, vitamin D metabolism, and multiple others by forming heterodimers with other transcription factors that regulate said processes. The evidence therefore shows that phenolic compounds can exert multiple bioactivities, with a mechanism of action based, at least in part, on their ability to modulate the cell at the molecular level by acting on nuclear receptors. The data point to a promising and novel area of study that links diet and health, although various unknowns justify further experimentation to reveal the precise way in which a given phenolic can interact with a nuclear receptor.

15.
Foods ; 13(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38201170

RESUMO

Guava and mamey are phenolic- and carotenoid-rich fruits with potential health benefits, but are minimally used as ingredients in functional beverages. The objectives of the present work are to optimize the content of guava and mamey pulps and a stevia solution in the formulation of a functional beverage with high content of bioactive compounds and sensory acceptability using a mixture design analysis, and to analyze its composition after in vitro digestion. The optimized formulation (17.77 and 19.23 g of guava and mamey pulps, respectively; 1% stevia solution) yielded a beverage with 418.21 mg gallic acid equivalents (GAE)/100 mL and 0.20 mg ß-carotene/100 mL, and an antioxidant capacity of 213.58, 78.90 and 234.03 mg Trolox equivalents (TE)/100 mL using three methodologies. The mathematical model developed was significant (p < 0.05), according to R2 values between 0.70 and 0.75. α- and ß-carotene were quantified during the oral phase of in vitro digestion. Gallic, p-coumaric, ferulic and chlorogenic acids were also identified. The beverage had a general acceptability of 6.72. We conclude that the mathematical model developed was a good predictor of the experimental data and that the optimized beverage contained high bioactive concentrations (phenolics and carotenoids) and was well-accepted by potential consumers.

16.
J Pharmacol Toxicol Methods ; 120: 107252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36716799

RESUMO

Insulin resistance (IR) is the main feature of prediabetes (PD), which ultimately leads to diabetes. High-dose streptozotocin-treated rodents often show irreversible ß-cell mass loss and function, leaving the premorbid diabetic state (PD/IR) unnoticed. This study aimed to re-evaluate the synergistic/independent effect of a sub-chronic consumption (1-5 weeks) of a high-fat diet (60% gross energy from fat, 3.8 kcal.g-1) with [PD/IR-2 (week 2) to PD/IR-5 week five)] or without [HFD-5 (week five)] a single intraperitoneal dose (35 mg.kg-1) of streptozotocin in Wistar rats. Bioassay performance and clinical/histological features suggesting PD/IR or diabetes, were documented weekly and compared to standard chow-fed (3.5 kcal.g-1) rats (healthy controls, HC). PD/IR1-5 (fed with HFD for 1 to 5 weeks plus a single dose of streptozotocin) and HFD-5 (just fed with HFD for 5 weeks) groups reduced their food intake yet gained more body weight than HC. Groups exhibited hyperglycemia, dyslipidemia, and impaired glucose tolerance in decreasing order as follows: PD/IR-5, PD/IR-4, HFD-5, PD/IR-2-3, and HC. Histological disturbances in the pancreas, Soleus muscle, and liver were mostly observed in HFD-5 and PD/IR4-5 groups. HFD administration for 4 weeks white a single moderate dose of streptozotocin four days before sacrifice, leads to a convenient PD/IR rat model.


Assuntos
Resistência à Insulina , Estado Pré-Diabético , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Estado Pré-Diabético/induzido quimicamente , Estreptozocina , Glicemia , Ratos Wistar , Insulina
17.
Antioxidants (Basel) ; 11(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35204267

RESUMO

Melatonin (MT) treatment (100 µM, 2 h) was applied to four mango fruit cultivars ('Langra', 'Chaunsa', 'Dashehari', and 'Gulab Jamun'), before being stored at 5 ± 1 °C for 28 d, in order to alleviate chilling injury (CI). Maximum CI reduction was observed in 'Langra' mangoes, and minimum in 'Gulab Jamun' mangoes. This positive effect on quality preservation was associated with an increased concentration of endogenous MT, which prevented the accumulation of reactive oxygen species (H2O2 and O2·-) and stimulated non-enzymatic antioxidants (total phenolic compounds and total flavonoids), possibly due to higher activity of phenylalanine ammonia lyase and tyrosine ammonia lyase. Increased antioxidant activity was also documented in MT-treated 'Langra' mangoes, according to four different assays (DPPH, TEAC, FRAP, and CUPRAC) and higher activity of six antioxidant enzymes (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase). In contrast, 'Gulab Jamun' mangoes showed minimal or no positive effects on the aforementioned variables in response to the exogenous MT application. 'Chaunsa' and 'Dashehari' mangoes had some intermediate effects on their antioxidant system (enzymatic and non-enzymatic) and alleviation of CI, when treated with exogenous MT. We conclude that exogenous MT exerts a cultivar-dependent stimulating effect on the antioxidant system of mangoes, which results in an increase in the fruits' resistance to low temperature.

18.
J Food Biochem ; 46(12): e14260, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35633197

RESUMO

Inflammation may negatively impact health, particularly that of the central nervous system. Phenolic compounds are bioactive molecules present in fruits and vegetables with potential anti-inflammatory effects. The purpose of the present work is to review the immunomodulatory bioactivities of phenolic compounds in the periphery and in the central nervous system. Results show that various types of phenolics are able to counter diet- or pathogen-induced systemic inflammation (among others) in various models. In vitro data show significant effects of flavonoids and phenolic acids in particular; similar bioactivities were reported in vivo, when administering them as pure compounds or from fruit and vegetable extracts that contain them. In the central nervous system, phenolics counter chronic inflammation and aggressive acute inflammatory processes, such as ischemic events, when administered preemptively and even therapeutically. We therefore conclude that the immunomodulatory potential of phenolic compounds can maintain an adequate immune response; their regular consumption should therefore be prioritized in order to maintain health. PRACTICAL APPLICATIONS: The immune response must be carefully regulated in order to avoid its deleterious effects. The present work highlights how phenolic compounds, dietary components ubiquitous in everyday diet, are able to maintain it within an adequate range. As humans are exposed to more proinflammatory stimuli (inadequate dietary pattern, mental stress, environmental pollution, chronic diseases, etc.), it becomes necessary to counter them, and consuming adequate amounts of foods that contain compounds with this ability is a rather simple strategy. Thus, the present work highlights how fruits and vegetables can help to maintain an adequate immune response that can preserve systemic health and that of the central nervous system. Furthermore, specific compounds contained in them can also be ideal candidates for additional in-depth studies, which can potentially lead to the development of potent, targeted, and safe anti-inflammatory molecules.


Assuntos
Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Dieta , Fenóis/farmacologia , Frutas , Verduras , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
19.
Bioengineering (Basel) ; 9(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36354534

RESUMO

Food waste is a serious problem with negative environmental and economic consequences. Unused food (either as waste or by-products and referred to as food residues in the present work) is a source of carbohydrates, lipids, proteins, vitamins, minerals and bioactive compounds that could be used in an alternate or secondary life cycle to avoid discarding it. The present work reviews the potential use of food residues for the bioengineering of single-cell protein (SCP), addressing aspects of production, nutrition and safety, as well as the main challenges and perspectives. SCP is obtained from various microorganisms, including fungi, bacteria, yeasts and algae, in pure or mixed form. SCP generally contains a higher percentage of protein (30-80%) compared to soy (38.6%), fish (17.8%), meat (21.2%) and whole milk (3.28%). SCP is a source of essential amino acids, including methionine, threonine and lysine. The use of food residues as substrates for the production of SCP would reduce production costs (35-75%); however, optimization and industrial scaling are some of the main challenges to its sustainable production. The use food waste and agro by-products from the food industry could be a promising alternative to obtain protein according to a circular production scheme.

20.
Foods ; 11(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37430928

RESUMO

One of the biggest problems faced by food industries is the generation of large amounts of agro-industrial byproducts, such as those derived from fruit processing, as well as the negative effects of their inadequate management. Approximately 1/3 of the food produced worldwide is unused or is otherwise wasted along the chain, which represents a burden on the environment and an inefficiency of the system. Thus, there is growing interest in reintroducing agro-industrial byproducts (both from fruits and other sources) into the processing chain, either by adding them as such or utilizing them as sources of health-promoting bioactive compounds. The present work discusses recent scientific studies on the nutritional and bioactive composition of some agro-industrial byproducts derived from fruit processing, their applications as ingredients to supplement baked foods, and their main biological activities on the consumer's health. Research shows that agro-industrial fruit byproducts can be incorporated into various baked foods, increasing their fiber content, bioactive profile, and antioxidant capacity, in addition to other positive effects such as reducing their glycemic impact and inducing satiety, all while maintaining good sensory acceptance. Using agro-industrial fruit byproducts as food ingredients avoids discarding them; it can promote some bioactivities and maintain or even improve sensory acceptance. This contributes to incorporating edible material back into the processing chain as part of a circular bioeconomy, which can significantly benefit primary producers, processing industries (particularly smaller ones), and the final consumer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA