Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncogene ; 23(44): 7378-90, 2004 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-15286700

RESUMO

Stimulation of resting W53 cells (lymphoid murine cells expressing prolactin (PRL) receptor) by PRL induced expression of growth-related immediate-early genes (IEG), and proliferation through activation of the Src kinases. Since IEG are essential for cell cycle progression, we have studied how PRL controls expression of c-Myc mRNA and c-Fos. Stimulation of W53 cell proliferation by PRL required activation of MAPK, as the Mek1/2 inhibitor PD184352 eliminated Erk1/2 stimulation, cell proliferation, and expression of c-Fos mRNA. In contrast, PD184352 did not alter PRL activation of c-Myc mRNA expression or stimulation of p70S6K, Akt, and the Jak2/Stat5 pathway. Activation of the PI3K by PRL was necessary for the expression of c-MycmRNA and W53 cell proliferation, as the PI3K inhibitor LY294002 abolished them. However, it did not modify PRL stimulation of c-Fos mRNA expression or activation of Erk1/2 and Stat5. Furthermore, rapamycin, an inhibitor of mTOR and consequently of p70S6K, did not alter PRL stimulation of c-Myc and c-Fos mRNA expression and it had a very minor inhibitory effect on PRL stimulation of W53 cell proliferation. In addition, rapamycin did not affect PRL stimulation of Akt or Stat5. However, it reinforced PRL activation of Erk1/2. Overexpression of a constitutively activated Akt (myristoylated Akt) in W53 cells overcame the inhibitory effect of LY294002 on c-Myc expression, as well as cell death upon PRL deprivation. Consistently, inducible expression of Akt-CAAX Box in W53 cells caused inhibition of c-Myc expression. PRL stimulation of W53 cells resulted in Akt translocation to the nucleus, phosphorylation of FKHRL1 transcription factor, and its nuclear exclusion. In contrast, induced expression of Akt-CAAX Box caused inhibition of FKHRL1 phosphorylation. Furthermore, transient expression of nonphosphorylatable FKHRL1-A3 mutant impaired PRL-induced activation of the c-Myc promoter. Akt activation also resulted in phosphorylation and inhibition of glycogen synthetase kinase 3 (GSK3), which in turn promoted c-Myc stability. Consistently, treatment of W53 with selective inhibitors of GSK3 such as SB415286 and lithium salts resulted in increased levels of c-Myc. Also, overexpression of c-Myc in W53 cells overcame the decrease in cell proliferation induced by LY294002. These findings defined a PRL-signalling cascade in W53 cells, involving Src kinases/PI3K/Akt/FKHRL1-GSK3, that mediates stimulation of c-Myc expression.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Genes myc/efeitos dos fármacos , Prolactina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ciclo Celular/efeitos dos fármacos , Divisão Celular/genética , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Genes Precoces/genética , Genes myc/genética , Genes src/fisiologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/genética
2.
Mol Endocrinol ; 17(11): 2268-82, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12907754

RESUMO

Prolactin (PRL) stimulates breast cancer cell proliferation; however, the involvement of PRL-activated signaling molecules in cell proliferation is not fully established. Here we studied the role of c-Src on PRL-stimulated proliferation of T47D and MCF7 breast cancer cells. We initially observed that PRL-dependent activation of focal adhesion kinase (Fak), Erk1/2, and cell proliferation was mediated by c-Src in T47D cells, because expression of a dominant-negative form of c-Src (SrcDM, K295A/Y527F) blocked the PRL-dependent effects. The Src inhibitor PP1 abrogated PRL-dependent in vivo activation of Fak, Erk1/2, p70S6K, and Akt and the proliferation of T47D and MCF7 cells; Janus kinase 2 (Jak2) activation was not affected. However, in vitro, Fak and Jak2 kinases were not directly inhibited by PP1, demonstrating the effect of PP1 on c-Src kinase as an upstream activator of Fak. Expression of Fak mutant Y397F abrogated PRL-dependent activation of Fak, Erk1/2, and thymidine incorporation, but had no effect on p70S6K and Akt kinases. MAPK kinase 1/2 (Mek1/2) inhibitor PD184352 blocked PRL-induced stimulation of Erk1/2 and cell proliferation; however, p70S6K and Akt activation were unaffected. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 abolished cell proliferation and activation of p70S6K and Akt; however, PRL-dependent activation of Erk1/2 was not modified. Moreover, we show that both c-Src/PI3K and c-Src/Fak/Erk1/2 pathways are involved in the up-regulation of c-myc and cyclin d1 expression mediated by PRL. The previous findings suggest the existence of two PRL-dependent signaling cascades, initiated by the c-Src-mediated activation of Fak/Erk1/2 and PI3K pathways that, subsequently, control the expression of c-Myc and cyclin D1 and the proliferation of T47D and MCF7 breast cancer cells.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prolactina/farmacologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/antagonistas & inibidores , Ovinos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA