Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 167: 118-128, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35413295

RESUMO

Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca2+ required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca2+-dependent arrhythmias, and cardiac performance. We used a constitutive knock-out of RyR2 in rabbits (RyR2-KO) to assess the extent to which a stable decrease in RyR2 expression modulates Ca2+ handling in the heart. We found that homozygous knock-out of RyR2 in rabbits is embryonic lethal. Remarkably, heterozygotes (KO+/-) show ~50% loss of RyR2 protein without developing an overt phenotype at the intact animal and whole heart levels. Instead, we found that KO+/- myocytes show (1) remodeling of RyR2 clusters, favoring smaller groups in which channels are more densely arranged; (2) lower Ca2+ spark frequency and amplitude; (3) slower rate of Ca2+ release and mild but significant desynchronization of the Ca2+ transient; and (4) a significant decrease in the basal phosphorylation of S2031, likely due to increased association between RyR2 and PP2A. Our data show that RyR2 deficiency, although remarkable at the molecular and subcellular level, has only a modest impact on global Ca2+ release and is fully compensated at the whole-heart level. This highlights the redundancy of RyR2 protein expression and the plasticity of the e-c coupling apparatus.


Assuntos
Adrenérgicos , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Acoplamento Excitação-Contração , Miócitos Cardíacos/metabolismo , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
2.
bioRxiv ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39026734

RESUMO

Background: Ryanodine receptor 2 (RyR2) is one of the first substrates undergoing phosphorylation upon catecholaminergic stimulation. Yet, the role of RyR2 phosphorylation in the adrenergic response remains debated. To date, three residues in RyR2 are known to undergo phosphorylation upon adrenergic stimulation. We generated a model of RyR2 phospho-ablation of all three canonical phospho-sites (RyR2-S2031A/S2808A/S2814A, triple phospho-mutant, TPM) to elucidate the role of phosphorylation at these residues in the adrenergic response. Methods: Cardiac structure and function, cellular Ca 2+ dynamics and electrophysiology, and RyR2 channel activity both under basal conditions and under isoproterenol (Iso) stimulation were systematically evaluated. We used echocardiography and electrocardiography in anesthetized mice, single-cell Ca 2+ imaging and whole-cell patch clamp in isolated adult cardiomyocytes, and biochemical assays. Results: Iso stimulation produced normal chronotropic and inotropic responses in TPM mice as well as an increase in the global Ca 2+ transients in isolated cardiomyocytes. Functional studies revealed fewer Ca 2+ sparks in permeabilized TPM myocytes, and reduced RyR2-mediated Ca 2+ leak in intact myocytes under Iso stimulation, suggesting that the canonical sites may regulate RyR2-mediated Ca 2+ leak. TPM mice also displayed increased propensity for arrhythmia. TPM myocytes were prone to develop early afterdepolarizations (EADs), which were abolished by chelating intracellular Ca 2+ with EGTA, indicating that EADs require SR Ca 2+ release. EADs were also blocked by a low concentration of tetrodotoxin, further suggesting reactivation of the sodium current ( I Na ) as the underlying cause. Conclusion: Phosphorylation of the three canonical residues on RyR2 may not be essential for the global adrenergic responses. However, these sites play a vital role in maintaining electrical stability during catecholamine stimulation by fine-tuning RyR2-mediated Ca 2+ leak. These findings underscore the importance of RyR2 phosphorylation and a finite diastolic Ca 2+ leak in maintaining electrical stability during catecholamine stimulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA