Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2674, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792792

RESUMO

Human migration facilitates the spread of infectious disease. However, little is known about the contribution of migration to the spread of tuberculosis in South Africa. We analyzed longitudinal data on all tuberculosis test results recorded by South Africa's National Health Laboratory Service (NHLS), January 2011-July 2017, alongside municipality-level migration flows estimated from the 2016 South African Community Survey. We first assessed migration patterns in people with laboratory-diagnosed tuberculosis and analyzed demographic predictors. We then quantified the impact of cross-municipality migration on tuberculosis incidence in municipality-level regression models. The NHLS database included 921,888 patients with multiple clinic visits with TB tests. Of these, 147,513 (16%) had tests in different municipalities. The median (IQR) distance travelled was 304 (163 to 536) km. Migration was most common at ages 20-39 years and rates were similar for men and women. In municipality-level regression models, each 1% increase in migration-adjusted tuberculosis prevalence was associated with a 0.47% (95% CI: 0.03% to 0.90%) increase in the incidence of drug-susceptible tuberculosis two years later, even after controlling for baseline prevalence. Similar results were found for rifampicin-resistant tuberculosis. Accounting for migration improved our ability to predict future incidence of tuberculosis.


Assuntos
Infecções por HIV , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , África do Sul/epidemiologia , Cidades , Tuberculose/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Inquéritos e Questionários , Infecções por HIV/epidemiologia
2.
Diagnostics (Basel) ; 13(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37568917

RESUMO

The high demand for SARS-CoV-2 tests but limited supply to South African laboratories early in the COVID-19 pandemic resulted in a heterogenous diagnostic footprint of open and closed molecular testing platforms being implemented. Ongoing monitoring of the performance of these multiple and varied systems required novel approaches, especially during the circulation of variants. The National Health Laboratory Service centrally collected cycle threshold (Ct) values from 1,497,669 test results reported from 6 commonly used PCR assays in 36 months, and visually monitored changes in their median Ct within a 28-day centered moving average for each assays' gene targets. This continuous quality monitoring rapidly identified delayed hybridization of RdRp in the Allplex™ SARS-CoV-2 assay due to the Delta (B.1.617.2) variant; S-gene target failure in the TaqPath™ COVID-19 assay due to B.1.1.7 (Alpha) and the B.1.1.529 (Omicron); and recently E-gene delayed hybridization in the Xpert® Xpress SARS-CoV-2 due to XBB.1.5. This near "real-time" monitoring helped inform the need for sequencing and the importance of multiplex molecular nucleic acid amplification technology designs used in diagnostics for patient care. This continuous quality monitoring approach at the granularity of Ct values should be included in ongoing surveillance and with application to other disease use cases that rely on molecular diagnostics.

3.
Sci Rep ; 13(1): 20875, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012266

RESUMO

The National Health Laboratory Service (NHLS) collects all public health laboratory test results in South Africa, providing a cohort from which to identify groups, by age, sex, HIV, and viral suppression status, that would benefit from increased tuberculosis (TB) testing. Using NHLS data (2012-2016), we assessed levels and trends over time in TB diagnostic tests performed (count and per capita) and TB test positivity. Estimates were stratified by HIV status, viral suppression, age, sex, and province. We used logistic regression to estimate the odds of testing positive for TB by viral suppression status. Nineteen million TB diagnostic tests were conducted during period 2012-2016. Testing per capita was lower among PLHIV with viral suppression than those with unsuppressed HIV (0.08 vs 0.32) but lowest among people without HIV (0.03). Test positivity was highest among young adults (aged 15-35 years), males of all age groups, and people with unsuppressed HIV. Test positivity was higher for males without laboratory evidence of HIV than those with HIV viral suppression, despite similar individual odds of TB. Our results are an important national baseline characterizing who received TB testing in South Africa. People without evidence of HIV, young adults, and males would benefit from increased TB screening given their lower testing rates and higher test positivity. These high-test positivity groups can be used to guide future expansions of TB screening.


Assuntos
Infecções por HIV , Tuberculose , Masculino , Adulto Jovem , Humanos , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , África do Sul/epidemiologia , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Programas de Rastreamento , Modelos Logísticos
4.
Nat Med ; 28(9): 1785-1790, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760080

RESUMO

Three lineages (BA.1, BA.2 and BA.3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern predominantly drove South Africa's fourth Coronavirus Disease 2019 (COVID-19) wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and similar to BA.2 except for the addition of 69-70 deletion (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild-type amino acid at Q493. The two lineages differ only outside of the spike region. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature. BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimated growth advantages for BA.4 and BA.5 of 0.08 (95% confidence interval (CI): 0.08-0.09) and 0.10 (95% CI: 0.09-0.11) per day, respectively, over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos , Animais , COVID-19/epidemiologia , Humanos , SARS-CoV-2/genética , África do Sul/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA