Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892194

RESUMO

The drug-resistant temporal lobe epilepsy (TLE) has recently been associated with single nucleotide variants (SNVs) in microRNA(miR)-146a (MIR-146A) (rs2910164) and Sodium Voltage-Gated Channel Alpha Subunit 1 (SCN1A) (rs2298771 and rs3812718) genes. Moreover, no studies have shown an association between these SNVs and susceptibility to drug-resistant and drug-responsive TLE in Brazil. Thus, deoxyribonucleic acid (DNA) samples from 120 patients with TLE (55 drug-responsive and 65 drug-resistant) were evaluated by real-time polymerase chain reaction (RT-PCR). A total of 1171 healthy blood donor individuals from the Online Archive of Brazilian Mutations (ABraOM, from Portuguese Arquivo Brasileiro On-line de Mutações), a repository containing genomic variants of the Brazilian population, were added as a control population for the studied SNVs. MIR-146A and SCN1A relative expression was performed by quantitative RT-PCR (qRT-PCR). The statistical analysis protocol was performed using an alpha error of 0.05. TLE patient samples and ABraOM control samples were in Hardy-Weinberg equilibrium for all studied SNVs. For rs2910164, the frequencies of the homozygous genotype (CC) (15.00% vs. 9.65%) and C allele (37.80% vs. 29.97%) were superior in patients with TLE compared to controls with a higher risk for TLE disease [odds ratio (OR) = 1.89 (95% confidence interval (95%CI) = 1.06-3.37); OR = 1.38 (95%CI = 1.04-1.82), respectively]. Drug-responsive patients also presented higher frequencies of the CC genotype [21.81% vs. 9.65%; OR = 2.58 (95%CI = 1.25-5.30)] and C allele [39.09% vs. 29.97%; OR = 1.50 (95%CI = 1.01-2.22)] compared to controls. For rs2298771, the frequency of the heterozygous genotype (AG) (51.67% vs. 40.40%) was superior in patients with TLE compared to controls with a higher risk for TLE disease [OR = 2.42 (95%CI = 1.08-5.41)]. Drug-resistant patients presented a higher AG frequency [56.92% vs. 40.40%; OR = 3.36 (95%CI = 1.04-17.30)] compared to the control group. For rs3812718, the prevalence of genotypes and alleles were similar in both studied groups. The MIR-146A relative expression level was lower in drug-resistant compared to drug-responsive patients for GC (1.6 vs. 0.1, p-value = 0.049) and CC (1.8 vs. 0.6, p-value = 0.039). Also, the SCN1A relative expression levels in samples from TLE patients were significantly higher in AG [2.09 vs. 1.10, p-value = 0.038] and GG (3.19 vs. 1.10, p-value < 0.001) compared to the AA genotype. In conclusion, the rs2910164-CC and rs2298771-AG genotypes are exerting significant risk influence, respectively, on responsive disease and resistant disease, probably due to an upregulated nuclear factor kappa B (NF-kB) and SCN1A loss of function.


Assuntos
Epilepsia do Lobo Temporal , MicroRNAs , Canal de Sódio Disparado por Voltagem NAV1.1 , Polimorfismo de Nucleotídeo Único , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , MicroRNAs/genética , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/tratamento farmacológico , Feminino , Masculino , Brasil , Adulto , Predisposição Genética para Doença , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Pessoa de Meia-Idade , Adulto Jovem , Genótipo , Estudos de Coortes , Alelos , Frequência do Gene , Adolescente , Estudos de Casos e Controles
2.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445894

RESUMO

The enzymatic hydrolysis of the extract of Sophora japonica by two glycosyl hydrolases (hesperidinase and galactosidase) was performed in order to obtain kaempferol (KPF)-enriched extract with an enhanced anticancer activity. The current study examined the effectiveness of both Sophora japonica extracts (before (KPF-BBR) and after (KPF-ABR) bioconversion reactions) in reducing cell viability and inducing apoptosis in human high-degree gliomas in vitro. Cytotoxicity was determined using an MTT assay. The effects of both compounds on the proliferation of glioma cell lines were measured using trypan blue exclusion, flow cytometry for cell cycle, wound healing (WH), and neurosphere formation assays. Cellular apoptosis was detected by DNA fragmentation and phosphatidylserine exposure. qPCR and luciferase assays evaluated NF-kB pathway inhibition. The survival rate of NG-97 and U-251 cells significantly decreased in a time- and dose-dependent manner after the addition of KPF-BBR or KPF-ABR. Thus, a 50% reduction was observed in NG-97 cells at 800 µM (KPF-BBR) and 600 µM (KPF-ABR) after 72 h. Both compounds presented an IC50 of 1800 µM for U251 after 72 h. The above IC50 values were used in all of the following analyses. Neither of the KPF presented significant inhibitory effects on the non-tumoral cells (HDFa). However, after 24 h, both extracts (KPF-BBR and KPF-ABR) significantly inhibited the migration and proliferation of NG-97 and U-251 cells. In addition, MMP-9 was downregulated in glioma cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) plus KPF-BBR and TPA+KPF-ABR compared with the TPA-treated cells. Both KPF-BBR and KPF-ABR significantly inhibited the proliferation of glioma stem cells (neurospheres) after 24 h. DNA fragmentation assays demonstrated that the apoptotic ratio of KPF-ABR-treated cell lines was significantly higher than in the control groups, especially NG-97, which is not TMZ resistant. In fact, the flow cytometric analysis indicated that KPF-BBR and KPF-ABR induced significant apoptosis in both glioma cells. In addition, both KPF induced S and G2/M cell cycle arrest in the U251 cells. The qPCR and luciferase assays showed that both KPFs downregulated TRAF6, IRAK2, IL-1ß, and TNF-α, indicating an inhibitory effect on the NF-kB pathway. Our findings suggest that both KPF-BBR and KPF-ABR can confer anti-tumoral effects on human cell glioma cells by inhibiting proliferation and inducing apoptosis, which is related to the NF-κB-mediated pathway. The KPF-enriched extract (KPF-ABR) showed an increased inhibitory effect on the cell migration and invasion, characterizing it as the best antitumor candidate.


Assuntos
Glioma , Sophora japonica , Humanos , NF-kappa B/metabolismo , Quempferóis/farmacologia , Linhagem Celular Tumoral , Glioma/metabolismo , Apoptose , Proliferação de Células , Movimento Celular
3.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806253

RESUMO

Glycyrrhizic acid (GA), a natural compound isolated from licorice (Glycyrrhiza glabra), has exhibited anti-inflammatory and anti-tumor effects in vitro. Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, also has shown an anti-tumor effect on glioblastoma cell lines, U87MG and T98G. The study investigated the DPG effects in the melanoma cell line (SK-MEL-28). MTT assay demonstrated that the viability of the cells was significantly decreased in a time- and dose-dependent manner after DPG (IC50 = 36 mM; 24 h). DNA fragmentation suggested that DPG (IC50) induced cellular apoptosis, which was confirmed by a significant number of TUNEL-positive cells (p-value = 0.048) and by PARP-1 [0.55 vs. 1.02 arbitrary units (AUs), p-value = 0.001], BAX (1.91 vs. 1.05 AUs, p-value = 0.09), and BCL-2 (0.51 vs. 1.07 AUs, p-value = 0.0018) mRNA compared to control cells. The proliferation and wound-healing assays showed an anti-proliferative effect on DPG-IC50-treated cells, also indicating an inhibitory effect on cell migration (p-values < 0.001). Moreover, it was observed that DPG promoted a 100% reduction in melanospheres formation (p-value = 0.008). Our previous microRNAs (miRs) global analysis has revealed that DPG might increase miR-4443 and miR-3620 expression levels. Thus, qPCR showed that after DPG treatment, SK-MEL-28 cells presented significantly high miR-4443 (1.77 vs. 1.04 AUs, p-value = 0.02) and miR-3620 (2.30 vs. 1.00 AUs, p-value = 0.01) expression compared to control cells, which are predicted to target the NF-kB, CD209 and TNC genes, respectively. Both genes are responsible for cell attachment and migration, and qPCR revealed significantly decreased CD209 (1.01 vs. 0.54 AUs, p-value = 0.018) and TNC (1.00 vs. 0.31 AUs, p-value = 2.38 × 10−6) mRNA expression levels after DPG compared to untreated cells. Furthermore, the migration of SK-MEL-28 cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) was attenuated by adding DPG by wound-healing assay (48 h: p-value = 0.004; 72 h: p-value = 7.0 × 10−4). In addition, the MMP-9 expression level was inhibited by DPG in melanoma cells stimulated by TPA and compared to TPA-treated cells (3.56 vs. 0.99 AUs, p-value = 0.0016) after 24 h of treatment. Our results suggested that DPG has an apoptotic, anti-proliferative, and anti-migratory effect on SK-MEL-28 cells. DPG was also able to inhibit cancer stem-like cells that may cause cerebral tumor formation.


Assuntos
Melanoma , MicroRNAs , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ácido Glicirrízico/farmacologia , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro
4.
BMC Cancer ; 18(1): 921, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30253739

RESUMO

BACKGROUND: Perianal Paget's disease (PPD) is a rare intraepithelial adenocarcinoma of the anal margin. Primary PPD likely represents intra-epithelial neoplasm from an apocrine source, whereas secondary disease may represent "pagetoid" spread from an anorectal malignancy. CASE PRESENTATION: Histologic CDX-2 and CK20 are hallmark markers for colorectal-derived Paget's cells. Interestingly, our primary PPD patient presented both positive and no internal malignancy was identified. In addition, a negative CK7 marker was observed in our case in contrast with previously reported. Surgical excision is the standard treatment; however, previous studies have demonstrated good response with Imiquimod 5% cream in patients with vulval extramammary Paget disease (EMPD). The efficiency of Imiquimod treatment for PPD has not been well described. Our PPD patient was successfully treated using Imiquimod 5% cream. CONCLUSIONS: This study describes a primary cutaneous PPD patient CDX-2+/CK20+/CK7- without invasion of the dermis and no associated colorectal carcinoma effectively treated using topical Imiquimod therapy, suggesting that Imiquimod might potentially be considered as a first-line treatment for PPD.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Ânus/diagnóstico , Neoplasias do Ânus/tratamento farmacológico , Imiquimode/administração & dosagem , Doença de Paget Extramamária/diagnóstico , Doença de Paget Extramamária/tratamento farmacológico , Administração Tópica , Idoso , Biomarcadores Tumorais , Biópsia , Humanos , Imuno-Histoquímica , Masculino , Resultado do Tratamento
5.
Methods Mol Biol ; 2595: 185-201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36441463

RESUMO

MicroRNAs (miRs) are small non-coding RNAs of 21-24 nucleotides in length that modulate gene expression by targeting the untranslated region (UTR) of mRNA. Single-nucleotide variants (SNVs) in primary miRs (pri-miRs), precursor miRs (pre-miRs), promoters of pri-miRs, and seed regions can affect miR stability or processing, may influence mature miR expression, and can affect target gene identification, respectively. The present protocol tests the binding and activity of miRs on 3'-UTR target sequences based on the expression of luciferase as a reporter gene fused to the UTR sequence in the presence of plasmids containing pre-miR of interest to test in vitro cell culture assay.


Assuntos
MicroRNAs , MicroRNAs/genética , Genes Reporter , Bioensaio , Técnicas de Cultura de Células , Regiões 3' não Traduzidas/genética , Nucleotídeos
6.
Front Oncol ; 12: 819599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992881

RESUMO

The nuclear factor kappa B (NF-κB) pathway has been reported to be responsible for the aggressive disease phenomenon observed in glioblastoma (GBM). Dipotassium glycyrrhizinate (DPG), a dipotassium salt of glycyrrhizic acid isolated from licorice, has recently demonstrated an anti-tumoral effect on GBM cell lines U87MG and T98G through NF-κB suppression by IRAK2- and TRAF6-mediating microRNA (miR)-16 and miR-146a, respectively. Thus, the present study aimed to evaluate the expression profiles of miRNAs related to NF-κB suppression in T98G GBM cell line after DPG exposure using miRNA microarray (Affymetrix Human miRNA 4.0A), considering only predicted miRNAs as NF-κB regulator genes. Additional assays using U251 and U138MG cells were performed to validate the array results. DPG cytotoxicity was determined by (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and cellular apoptosis was quantified by DNA fragmentation and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The anti-proliferative effect was observed by cell proliferation and wound-healing assays, and the sphere formation assay examined whether DPG reduced stem cell subpopulation formation. The most over-expressed miRNAs were miR-4443 and miR-3620. The cytotoxic effect of DPG in U251 and U138MG was observed with an IC50 of 32 and 20 mM for 48 h, respectively. The IC50 of each cell line was used in all further assays. DPG treatment-induced apoptosis is observed by DNA fragmentation and increased TUNEL-positive cells. Cell proliferation and wound-healing assays showed an anti-proliferative and anti-migratory effect by DPG on the evaluated cell lines. In addition, DPG treatment led to a 100% reduction in sphere formation. The qPCR results in U251 and U138MG cells showed that DPG increased miR-4443 (2.44 vs. 1.11, p-value = 0.11; 8.27 vs. 1.25, p-value = 0.04) and miR-3620 expression (1.66 vs. 1.00, p-value = 0.03; 8.47 vs. 1.01, p-value = 0.03) and decreased CD209 (0.44 vs. 1.10, p-value = 0.03; 0.49 vs. 1.07, p-value = 0.04) and TNC (0.20 vs. 1.03, p-value = 0.001; 0.39 vs. 1.06, p-value = 0.01) mRNA levels compared to controls. Our results suggest that DPG inhibits cell viability by activating apoptosis and inhibiting cell proliferation and stem cell subpopulation formation through miR-4443 and miR-3620 upregulation. Both miRNAs are responsible for the post-transcriptional inhibition of NF-κB by CD209 and TNC modulation.

7.
Front Cell Neurosci ; 13: 216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191251

RESUMO

It has been shown that nuclear factor kappa-B (NF-κB) is constitutively activated in glioblastoma (GBM), suggesting that the pathway could be a therapeutic target. Glycyrrhetic acid (GA), a compound isolated from licorice (Glycyrrhiza glabra), has been shown to decrease cell viability and increases apoptosis in human cancer cell lines by NF-κB signaling pathway suppression. Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, has anti-inflammatory properties without toxicity. The current study examined the effectiveness of DPG as an anti-tumor in U87MG and T98G GBM cell lines. Additionally, we assessed DPG as a candidate for combinational therapy in GBM with temozolomide (TMZ). Our results demonstrated that the viability of U87MG and T98G cells significantly decreased in a time- and dose-dependent manner after DPG treatment, and the apoptotic ratio of DPG-treated groups was significantly higher than that of control groups. In addition, DPG in combination with TMZ revealed synergistic effects. Furthermore, the expression of NF-κB-luciferase-reporter in transfected GBM cell lines was remarkably reduced after DPG exposure by up-regulating miR16 and miR146a, which down-regulate its target genes, IRAK2 and TRAF6. A reduced neuro-sphere formation was also observed after DPG in both GBM cells. In conclusion, DPG presented anti-tumoral effect on GBM cell lines through a decrease on proliferation and an increase on apoptosis. In addition, our data also suggest that DPG anti-tumoral effect is related to NF-κB suppression, where IRAK2- and TRAF6-mediating miR16 and miR146a, respectively, might be a potential therapeutic target of DPG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA