Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202412337, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106111

RESUMO

A cascade Nazarov cyclization/dicycloexpansions reaction was developed for the precise synthesis of the angularly fused M/5/N (M = 5, 6; N = 4-9, 13) tricyclic skeletons. The prioritized expansion of the first ring played a critical role in the transformations, due to the release of ring strain, and the nature of the substituents present on the substrate is another influencing factor. This pioneering cascade reaction features broad substrates scope (33 examples), short reaction time, exceptional yields (up to 95%), and remarkable regioselectivities (> 20:1). Exploiting the synthetic application of this cascade reaction, we successfully executed a succinct total synthesis of nominal madreporanone for the first time.

2.
Chem Asian J ; 15(1): 182-190, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31769211

RESUMO

Metal-organic frameworks (MOFs) as new classes of proton-conducting materials have been highlighted in recent years. Nevertheless, the exploration of proton-conducting MOFs as formic acid sensors is extremely lacking. Herein, we prepared two highly stable 3D isostructural lanthanide(III) MOFs, {(M(µ3 -HPhIDC)(µ2 -C2 O4 )0.5 (H2 O))⋅2 H2 O}n (M=Tb (ZZU-1); Eu (ZZU-2)) (H3 PhIDC=2-phenyl-1H-imidazole-4,5-dicarboxylic acid), in which the coordinated and uncoordinated water molecules and uncoordinated imidazole N atoms play decisive roles for the high-performance proton conduction and recognition ability for formic acid. Both ZZU-1 and ZZU-2 show temperature- and humidity-dependent proton-conducting characteristics with high conductivities of 8.95×10-4 and 4.63×10-4  S cm-1 at 98 % RH and 100 °C, respectively. Importantly, the impedance values of the two MOF-based sensors decrease upon exposure to formic acid vapor generated from formic aqueous solutions at 25 °C with good reproducibility. By comparing the changes of impedance values, we can indirectly determine the concentration of HCOOH in aqueous solution. The results showed that the lowest detectable concentrations of formic acid aqueous solutions are 1.2×10-2  mol L-1 by ZZU-1 and 2.0×10-2  mol L-1 by ZZU-2. Furthermore, the two sensors can distinguish formic acid vapor from interfering vapors including MeOH, N-hexane, benzene, toluene, EtOH, acetone, acetic acid and butane. Our research provides a new platform of proton-conductive MOFs-based sensors for detecting formic acid.


Assuntos
Formiatos/análise , Elementos da Série dos Lantanídeos/química , Estruturas Metalorgânicas/química , Prótons , Umidade , Tamanho da Partícula , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA