Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7959): 105-110, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020019

RESUMO

Rates of ice-sheet grounding-line retreat can be quantified from the spacing of corrugation ridges on deglaciated regions of the seafloor1,2, providing a long-term context for the approximately 50-year satellite record of ice-sheet change3-5. However, the few existing examples of these landforms are restricted to small areas of the seafloor, limiting our understanding of future rates of grounding-line retreat and, hence, sea-level rise. Here we use bathymetric data to map more than 7,600 corrugation ridges across 30,000 km2 of the mid-Norwegian shelf. The spacing of the ridges shows that pulses of rapid grounding-line retreat, at rates ranging from 55 to 610 m day-1, occurred across low-gradient (±1°) ice-sheet beds during the last deglaciation. These values far exceed all previously reported rates of grounding-line retreat across the satellite3,4,6,7 and marine-geological1,2 records. The highest retreat rates were measured across the flattest areas of the former bed, suggesting that near-instantaneous ice-sheet ungrounding and retreat can occur where the grounding line approaches full buoyancy. Hydrostatic principles show that pulses of similarly rapid grounding-line retreat could occur across low-gradient Antarctic ice-sheet beds even under present-day climatic forcing. Ultimately, our results highlight the often-overlooked vulnerability of flat-bedded areas of ice sheets to pulses of extremely rapid, buoyancy-driven retreat.

2.
Nature ; 550(7677): 506-510, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29072274

RESUMO

Marine ice-cliff instability (MICI) processes could accelerate future retreat of the Antarctic Ice Sheet if ice shelves that buttress grounding lines more than 800 metres below sea level are lost. The present-day grounding zones of the Pine Island and Thwaites glaciers in West Antarctica need to retreat only short distances before they reach extensive retrograde slopes. When grounding zones of glaciers retreat onto such slopes, theoretical considerations and modelling results indicate that the retreat becomes unstable (marine ice-sheet instability) and thus accelerates. It is thought that MICI is triggered when this retreat produces ice cliffs above the water line with heights approaching about 90 metres. However, observational evidence confirming the action of MICI has not previously been reported. Here we present observational evidence that rapid deglacial ice-sheet retreat into Pine Island Bay proceeded in a similar manner to that simulated in a recent modelling study, driven by MICI. Iceberg-keel plough marks on the sea-floor provide geological evidence of past and present iceberg morphology, keel depth and drift direction. From the planform shape and cross-sectional morphologies of iceberg-keel plough marks, we find that iceberg calving during the most recent deglaciation was not characterized by small numbers of large, tabular icebergs as is observed today, which would produce wide, flat-based plough marks or toothcomb-like multi-keeled plough marks. Instead, it was characterized by large numbers of smaller icebergs with V-shaped keels. Geological evidence of the form and water-depth distribution of the plough marks indicates calving-margin thicknesses equivalent to the threshold that is predicted to trigger ice-cliff structural collapse as a result of MICI. We infer rapid and sustained ice-sheet retreat driven by MICI, commencing around 12,300 years ago and terminating before about 11,200 years ago, which produced large numbers of icebergs smaller than the typical tabular icebergs produced today. Our findings demonstrate the effective operation of MICI in the past, and highlight its potential contribution to accelerated future retreat of the Antarctic Ice Sheet.

3.
Proc Natl Acad Sci U S A ; 116(38): 18867-18873, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31481619

RESUMO

Airborne radar sounding can measure conditions within and beneath polar ice sheets. In Antarctica, most digital radar-sounding data have been collected in the last 2 decades, limiting our ability to understand processes that govern longer-term ice-sheet behavior. Here, we demonstrate how analog radar data collected over 40 y ago in Antarctica can be combined with modern records to quantify multidecadal changes. Specifically, we digitize over 400,000 line kilometers of exploratory Antarctic radar data originally recorded on 35-mm optical film between 1971 and 1979. We leverage the increased geometric and radiometric resolution of our digitization process to show how these data can be used to identify and investigate hydrologic, geologic, and topographic features beneath and within the ice sheet. To highlight their scientific potential, we compare the digitized data with contemporary radar measurements to reveal that the remnant eastern ice shelf of Thwaites Glacier in West Antarctica had thinned between 10 and 33% between 1978 and 2009. We also release the collection of scanned radargrams in their entirety in a persistent public archive along with updated geolocation data for a subset of the data that reduces the mean positioning error from 5 to 2.5 km. Together, these data represent a unique and renewed extensive, multidecadal historical baseline, critical for observing and modeling ice-sheet change on societally relevant timescales.

4.
Nat Commun ; 13(1): 5835, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220807

RESUMO

In the Northern Hemisphere, ~1500 glaciers, accounting for 28% of glacierized area outside the Greenland Ice Sheet, terminate in the ocean. Glacier mass loss at their ice-ocean interface, known as frontal ablation, has not yet been comprehensively quantified. Here, we estimate decadal frontal ablation from measurements of ice discharge and terminus position change from 2000 to 2020. We bias-correct and cross-validate estimates and uncertainties using independent sources. Frontal ablation of marine-terminating glaciers contributed an average of 44.47 ± 6.23 Gt a-1 of ice to the ocean from 2000 to 2010, and 51.98 ± 4.62 Gt a-1 from 2010 to 2020. Ice discharge from 2000 to 2020 was equivalent to 2.10 ± 0.22 mm of sea-level rise and comprised approximately 79% of frontal ablation, with the remainder from terminus retreat. Near-coastal areas most impacted include Austfonna, Svalbard, and central Severnaya Zemlya, the Russian Arctic, and a few Alaskan fjords.


Assuntos
Camada de Gelo , Regiões Árticas , Groenlândia , Federação Russa , Svalbard
5.
Sci Data ; 7(1): 176, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647176

RESUMO

Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 × 200 m versus 500 × 500 m) and with individual depth soundings constraining three times more area of the Arctic Ocean (∼19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises ∼14.3% in Ver. 4.0 compared to ∼5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet.

6.
Sci Adv ; 4(4): eaar4353, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29651462

RESUMO

Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than -10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system.

7.
Science ; 311(5763): 963-4, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16484484
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA