RESUMO
Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.
Assuntos
Incêndios , Traqueófitas , Incêndios Florestais , Clima , Mudança ClimáticaRESUMO
Changing wildfire regimes are causing rapid shifts in forests worldwide. In particular, forested landscapes that burn repeatedly in relatively quick succession may be at risk of conversion when pre-fire vegetation cannot recover between fires. Fire refugia (areas that burn less frequently or severely than the surrounding landscape) support post-fire ecosystem recovery and the persistence of vulnerable species in fire-prone landscapes. Observed and projected fire-induced forest losses highlight the need to understand where and why forests persist in refugia through multiple fires. This research need is particularly acute in the Klamath-Siskiyou ecoregion of southwest Oregon and northwest California, USA, where expected increases in fire activity and climate warming may result in the loss of up to one-third of the region's conifer forests, which are the most diverse in western North America. Here, we leverage recent advances in fire progression mapping and weather interpolation, in conjunction with a novel application of satellite smoke imagery, to model the key controls on fire refugia occurrence and persistence through one, two, and three fire events over a 32-year period. Hotter-than-average fire weather was associated with lower refugia probability and higher fire severity. Refugia that persisted through three fire events appeared to be partially entrained by landscape features that offered protection from fire, suggesting that topographic variability may be an important stabilizing factor as forests pass through successive fire filters. In addition, smoke density strongly influenced fire effects, with fire refugia more likely to occur when smoke was moderate or dense in the morning, a relationship attributable to reduced incoming solar radiation resulting from smoke shading. Results from this study could inform management strategies designed to protect fire-resistant portions of biologically and topographically diverse landscapes.
Assuntos
Refúgio de Vida Selvagem , Traqueófitas , Ecossistema , Florestas , América do Norte , OregonRESUMO
Wildfires in the western United States (US) are increasingly expensive, destructive, and deadly. Reducing wildfire losses is particularly challenging when fires frequently start on one land tenure and damage natural or developed assets on other ownerships. Managing wildfire risk in multijurisdictional landscapes has recently become a centerpiece of wildfire strategic planning, legislation, and risk research. However, important empirical knowledge gaps remain regarding cross-boundary fire activity in the western US. Here, we use lands administered by the US Forest Service as a study system to assess the causes, ignition locations, structure loss, and social and biophysical factors associated with cross-boundary fire activity over the past three decades. Results show that cross-boundary fires were primarily caused by humans on private lands. Cross-boundary ignitions, area burned, and structure losses were concentrated in California. Public lands managed by the US Forest Service were not the primary source of fires that destroyed the most structures. Cross-boundary fire activity peaked in moderately populated landscapes with dense road and jurisdictional boundary networks. Fire transmission is increasing, and evidence suggests it will continue to do so in the future. Effective cross-boundary fire risk management will require cross-scale risk co-governance. Focusing on minimizing damages to high-value assets may be more effective than excluding fire from multijurisdictional landscapes.
RESUMO
Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the ß-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.