Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 198: 106554, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844243

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder that severely affects the basal ganglia and regions of the cerebral cortex. While astrocytosis and microgliosis both contribute to basal ganglia pathology, the contribution of gliosis and potential factors driving glial activity in the human HD cerebral cortex is less understood. Our study aims to identify nuanced indicators of gliosis in HD which is challenging to identify in the severely degenerated basal ganglia, by investigating the middle temporal gyrus (MTG), a cortical region previously documented to demonstrate milder neuronal loss. Immunohistochemistry was conducted on MTG paraffin-embedded tissue microarrays (TMAs) comprising 29 HD and 35 neurologically normal cases to compare the immunoreactivity patterns of key astrocytic proteins (glial fibrillary acidic protein, GFAP; inwardly rectifying potassium channel 4.1, Kir4.1; glutamate transporter-1, GLT-1; aquaporin-4, AQP4), key microglial proteins (ionised calcium-binding adapter molecule-1, IBA-1; human leukocyte antigen (HLA)-DR; transmembrane protein 119, TMEM119; purinergic receptor P2RY12, P2RY12), and indicators of proliferation (Ki-67; proliferative cell nuclear antigen, PCNA). Our findings demonstrate an upregulation of GFAP+ protein expression attributed to the presence of more GFAP+ expressing cells in HD, which correlated with greater cortical mutant huntingtin (mHTT) deposition. In contrast, Kir4.1, GLT-1, and AQP4 immunoreactivity levels were unchanged in HD. We also demonstrate an increased number of IBA-1+ and TMEM119+ microglia with somal enlargement. IBA-1+, TMEM119+, and P2RY12+ reactive microglia immunophenotypes were also identified in HD, evidenced by the presence of rod-shaped, hypertrophic, and dystrophic microglia. In HD cases, IBA-1+ cells contained either Ki-67 or PCNA, whereas GFAP+ astrocytes were devoid of proliferative nuclei. These findings suggest cortical microgliosis may be driven by proliferation in HD, supporting the hypothesis of microglial proliferation as a feature of HD pathophysiology. In contrast, astrocytes in HD demonstrate an altered GFAP expression profile that is associated with the degree of mHTT deposition.


Assuntos
Astrócitos , Proliferação de Células , Doença de Huntington , Microglia , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Microglia/metabolismo , Microglia/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Proliferação de Células/fisiologia , Adulto , Idoso , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Gliose/metabolismo , Gliose/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Membrana , Proteínas dos Microfilamentos
2.
EMBO J ; 39(17): e104671, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32757223

RESUMO

Phosphorylation of the N-terminal domain of the huntingtin (HTT) protein has emerged as an important regulator of its localization, structure, aggregation, clearance and toxicity. However, validation of the effect of bona fide phosphorylation in vivo and assessing the therapeutic potential of targeting phosphorylation for the treatment of Huntington's disease (HD) require the identification of the enzymes that regulate HTT phosphorylation. Herein, we report the discovery and validation of a kinase, TANK-binding kinase 1 (TBK1), that efficiently phosphorylates full-length and N-terminal HTT fragments in vitro (at S13/S16), in cells (at S13) and in vivo. TBK1 expression in HD models (cells, primary neurons, and Caenorhabditis elegans) increases mutant HTT exon 1 phosphorylation and reduces its aggregation and cytotoxicity. We demonstrate that the TBK1-mediated neuroprotective effects are due to phosphorylation-dependent inhibition of mutant HTT exon 1 aggregation and an increase in autophagic clearance of mutant HTT. These findings suggest that upregulation and/or activation of TBK1 represents a viable strategy for the treatment of HD by simultaneously lowering mutant HTT levels and blocking its aggregation.


Assuntos
Caenorhabditis elegans/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Mutação , Agregados Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Ratos
3.
Cell Commun Signal ; 22(1): 30, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212807

RESUMO

Glioblastoma is the most common and aggressive primary brain tumour in adults. The development of anti-brain cancer agents are challenged by the blood-brain barrier and the resistance conferred by the local tumour microenvironment. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence compounds that have recently emerged as promising agents for drug delivery. We conjugated palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, to an HMCD, MHI-148, and conducted drug activity analysis on primary patient-derived glioblastoma cell lines. In addition to the expected cytostatic activity, our in vitro studies revealed that palbociclib-MHI-148 conjugate resulted in an almost 100-fold increase in cytotoxicity compared to palbociclib alone. This shift of palbociclib from cytostatic to cytotoxic when conjugated to MHI-148 was due to increased DNA damage, as indicated by an increase in γH2AX foci, followed by an increased expression of key extrinsic apoptosis genes, including TP53, TNFR1, TRAIL, FADD and caspase 8. In addition, we observed a time-dependent increase in the cell surface expression of TNFR1, consistent with an observed increase in the secretion TNFα, followed by TNFR1 endocytosis at 48 h. The treatment of patient GBM cells with the palbociclib-MHI-148 conjugate prevented TNFα-induced NFκB translocation, suggesting conjugate-induced TNFR1 signalling favoured the TNFR1-mediated apoptotic response rather than the pro-inflammatory response pathway. Notably, pharmacological inhibition of endocytosis of TNFR1, and siRNA-knockdown of TNFR1 reversed the palbociclib-MHI-148-induced cell death. These results show a novel susceptibility of glioblastoma cells to TNFR1-dependent apoptosis, dependent on inhibition of canonical NFκB signalling using our previously reported palbociclib-HMCD conjugate. Video Abstract.


Assuntos
Antineoplásicos , Carbocianinas , Citostáticos , Glioblastoma , Indóis , Piperazinas , Piridinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Citostáticos/farmacologia , Citostáticos/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
4.
Neurobiol Dis ; 185: 106245, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527763

RESUMO

TDP-43 dysfunction is a molecular hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A major hypothesis of TDP-43 dysfunction in disease is the loss of normal nuclear function, resulting in impaired RNA regulation and the emergence of cryptic exons. Cryptic exons and differential exon usage are emerging as promising markers of lost TDP-43 function in addition to revealing biological pathways involved in neurodegeneration in ALS/FTD. In this brief report, we identified markers of TDP-43 loss of function by depleting TARDBP from post-mortem human brain pericytes, a manipulable in vitro primary human brain cell model, and identifying differential exon usage events with bulk RNA-sequencing analysis. We present these data in an interactive database (https://www.scotterlab.auckland.ac.nz/research-themes/tdp43-lof-db-v2/) together with seven other TDP-43-depletion datasets we meta-analysed previously, for user analysis of differential expression and splicing signatures. Differential exon usage events that were validated by qPCR were then compiled into a 'differential exon usage panel' with other well-established TDP-43 loss-of-function exon markers. This differential exon usage panel was investigated in ALS and control motor cortex tissue to verify whether, and to what extent, TDP-43 loss of function occurs in ALS. We find that profiles of TDP-43-regulated cryptic exons, changed exon usage and changed 3' UTR usage discriminate ALS brain tissue from controls, verifying that TDP-43 loss of function occurs in ALS. We propose that TDP-43-regulated splicing events that occur in brain tissue will have promise as predictors of disease.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , RNA , Splicing de RNA
5.
Cytometry A ; 103(6): 518-527, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36786336

RESUMO

Current analysis techniques available for migration assays only provide quantitative measurements for overall migration. However, the potential of regional migration analyses can open further insight into migration patterns and more avenues of experimentation with the same assays. Previously, we developed an analysis pipeline utilizing the finite element (FE) method to show its potential in analyzing glioblastoma (GBM) tumorsphere migration, especially in characterizing regional changes in the migration pattern. This study aims to streamline and further automate the analysis system by integrating the machine-learning-based U-Net segmentation with the FE method. Our U-Net-based segmentation achieved a 98% accuracy in segmenting our tumorspheres. From the segmentations, FE models made up of 3D hexahedral elements were generated, and the migration patterns of the tumorspheres were analyzed under treatments B and C (under non-disclosure agreements). Our results show that our overall migration analysis correlated very strongly (R2 of 0.9611 and 0.9986 for treatments B and C, respectively) with ImageJ's method of migration area analysis, which is the most common method of tumorsphere migration analysis. Additionally, we were able to quantitatively represent the regional migration patterns in our FE models, which the methods purely based on segmentations could not do. Moreover, the new pipeline improved the efficiency and accessibility of the initial pipeline by implementing machine learning-based automated segmentation onto a mainly open-sourced FE analysis platform. In conclusion, our algorithm enables the development of a high-content and high-throughput in vitro screening platform to elucidate anti-migratory molecules that may reduce the invasiveness of these malignant tumors.


Assuntos
Glioblastoma , Aprendizado de Máquina , Humanos , Glioblastoma/patologia , Algoritmos
6.
Mol Cell Neurosci ; 123: 103768, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36038081

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal movement disorder involving degeneration of motor neurons through dysfunction of the RNA-binding protein TDP-43. Pericytes, the perivascular cells of the blood-brain, blood-spinal cord, and blood-CSF barriers also degenerate in ALS. Indeed, pericytes are among the earliest cell types to show gene expression changes in pre-symptomatic animal models of ALS. This suggests that pericyte degeneration precedes neurodegeneration and may involve pericyte cell-autonomous TDP-43 dysfunction. Here we determined the effect of TDP-43 dysfunction in human brain pericytes on interleukin 6 (IL-6), a critical secreted inflammatory mediator reported to be regulated by TDP 43. Primary human brain pericytes were cultured from biopsy tissue from epilepsy surgeries and TDP-43 was silenced using siRNA. TDP-43 silencing of pericytes stimulated with pro-inflammatory cytokines, interleukin-1ß or tumour necrosis factor alpha, robustly suppressed the induction of IL-6 transcript and protein. IL-6 regulation by TDP-43 did not involve the assembly of TDP-43 nuclear splicing bodies, and did not occur via altered splicing of IL6. Instead, transcriptome-wide analysis by RNA-Sequencing identified a poison exon in the IL6 destabilising factor HNRNPD (AUF1) as a splicing target of TDP-43. Our data support a model whereby TDP-43 silencing favours destabilisation of IL6 mRNA, via enhanced AU-rich element-mediated decay by HNRNP/AUF1. This suggests that cell-autonomous deficits in TDP-43 function in human brain pericytes would suppress their production of IL-6. Given the importance of the blood-brain and blood-spinal cord barriers in maintaining motor neuron health, TDP-43 in human brain pericytes may represent a cellular target for ALS therapeutics.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Interleucina-6 , Pericitos , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Interleucina-6/metabolismo , Pericitos/metabolismo , Pericitos/patologia , Medula Espinal/metabolismo
7.
Neurobiol Dis ; 174: 105884, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36220612

RESUMO

Huntington's disease (HD) is caused by a CAG repeat expansion mutation in the gene encoding the huntingtin (Htt) protein, with mutant Htt protein subsequently forming aggregates within the brain. Mutant Htt is a current target for novel therapeutic strategies for HD, however, the lack of translation from preclinical research to disease-modifying treatments highlights the need to improve our understanding of the role of Htt protein in the human brain. This study aims to undertake an immunohistochemical screen of 12 candidate antibodies against various sequences along the Htt protein to characterize Htt distribution and expression in post-mortem human brain tissue microarrays (TMAs). Immunohistochemistry was performed on middle temporal gyrus TMAs comprising of up to 28 HD and 27 age-matched control cases, using 12 antibodies specific to various sequences along the Htt protein. From this study, six antibodies directed to the Htt N-terminus successfully immunolabeled human brain tissue. Htt aggregates and Htt protein expression levels for the six successful antibodies were subsequently quantified with a customized automated image analysis pipeline on the TMAs. A 2.5-12 fold increase in the number of Htt aggregates were detected in HD cases using antibodies MAB5374, MW1, and EPR5526, despite no change in overall Htt protein expression compared to control cases, suggesting a redistribution of Htt into aggregates in HD. MAB5374, MW1, and EPR5526 Htt aggregate numbers were positively correlated with CAG repeat length, and negatively correlated with the age of symptom onset in HD. However, the number of Htt aggregates did not correlate with the degree of striatal degeneration or the degree of cortical neuron loss. Together, these results suggest that longer CAG repeat lengths correlate with Htt aggregation in the HD human brain, and greater Htt cortical aggregate deposition is associated with an earlier age of symptom onset in HD. This study also reinforces that antibodies MAB5492, MW8, and 2B7 which have been utilized to characterize Htt in animal models of HD do not specifically immunolabel Htt aggregates in HD human brain tissue exclusively, thereby highlighting the need for validated means of Htt detection to support drug development for HD.


Assuntos
Doença de Huntington , Animais , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Corpo Estriado/metabolismo , Encéfalo/metabolismo , Mutação
8.
BMC Neurol ; 22(1): 216, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690735

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable and rapidly progressive neurological disorder. Biomarkers are critical to understanding disease causation, monitoring disease progression and assessing the efficacy of treatments. However, robust peripheral biomarkers are yet to be identified. Neuroinflammation and breakdown of the blood-brain barrier (BBB) are common to familial and sporadic ALS and may produce a unique biomarker signature in peripheral blood. Using cytometric bead array (n = 15 participants per group (ALS or control)) and proteome profiling (n = 6 participants per group (ALS or control)), we assessed a total of 106 serum cytokines, growth factors, and BBB breakdown markers in the serum of control and ALS participants. Further, primary human brain pericytes, which maintain the BBB, were used as a biosensor of inflammation following pre-treatment with ALS serum. Principal components analysis of all proteome profile data showed no clustering of control or ALS sera, and no individual serum proteins met the threshold for statistical difference between ALS and controls (adjusted P values). However, the 20 most changed proteins between control and ALS sera showed a medium effect size (Cohen's d = 0.67) and cluster analysis of their levels together identified three sample subsets; control-only, mixed control-ALS, and ALS-only. These 20 proteins were predominantly pro-angiogenic and growth factors, including fractalkine, BDNF, EGF, PDGF, Dkk-1, MIF and angiopoietin-2. S100ß, a protein highly concentrated in glial cells and therefore a marker of BBB leakage when found in blood, was unchanged in ALS serum, suggesting that serum protein profiles were reflective of peripheral rather than CNS biofluids. Finally, primary human brain pericytes remained proliferative and their secretome was unchanged by chronic exposure to ALS serum. Our exploratory study suggests that individual serum cytokine levels may not be robust biomarkers in small studies of ALS, but that larger studies using multiplexed analysis of pro-angiogenic and growth factors may identify a peripheral signature of ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/patologia , Biomarcadores , Barreira Hematoencefálica/metabolismo , Citocinas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Doenças Neuroinflamatórias , Proteoma/metabolismo
9.
Bioorg Med Chem Lett ; 50: 128336, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34438012

RESUMO

Cytoprotective agents are mainly used to protect the gastrointestinal tract linings and in the treatment of gastric ulcers. These agents are devoid of appreciable cytotoxic or cytostatic effects, and medicinal chemistry efforts to modify them into anticancer agents are rare. A drug repurposing campaign initiated in our laboratory with the primary focus of discovering brain cancer drugs resulted in drug-dye conjugate 1, a combination of the cytoprotective agent troxipide and heptamethine cyanine dye MHI 148. The drug-dye conjugate 1 was evaluated in three different patient-derived adult glioblastoma cell lines, commercially available U87 glioblastoma, and one paediatric glioblastoma cell line. In all cases, the conjugate 1 showed potent cytotoxic activity with nanomolar potency (EC50: 267 nM). Interestingly, troxipide alone does not show any cytotoxic and cytostatic activity in the above cell lines. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug used for glioblastoma treatment, even though the cell lines we used in this study were resistant to TMZ treatment. Herein we disclose the synthesis and in vitro activity of drug-dye conjugate 1 for treatment of difficult-to-treat brain cancers such as glioblastoma.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carbocianinas/química , Glioblastoma/tratamento farmacológico , Indóis/química , Piperidinas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Desenho de Fármacos , Reposicionamento de Medicamentos , Quimioterapia Combinada , Humanos , Estrutura Molecular , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico
10.
Neurobiol Dis ; 146: 105092, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979507

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in exon 1 of the huntingtin gene. Emerging evidence shows that additional epigenetic factors can modify disease phenotypes. Harnessing the ability of the epigenome to modify the disease for therapeutic purposes is therefore of interest. Epigenome modifiers, such as histone deacetylase inhibitors (HDACi), have improved pathology in a range of HD models. Yet in clinical trials, HDACi have failed to alleviate HD symptoms in patients. This study investigated potential reasons for the lack of translation of the therapeutic benefits of HDACi from lab to clinic. We analysed histone acetylation patterns of immuno-positive nuclei from brain sections and tissue microarrays from post-mortem human control and HD cases alongside several well-established HD models (OVT73 transgenic HD sheep, YAC128 mice, and an in vitro cell model expressing 97Q mutant huntingtin). Significant increases in histone H4 acetylation were observed in post-mortem HD cases, OVT73 transgenic HD sheep and in vitro models; these changes were absent in YAC128 mice. In addition, nuclear labelling for acetyl-histone H4 levels were inversely proportional to mutant huntingtin aggregate load in HD human cortex. Our data raise concerns regarding the utility of HDACi for the treatment of HD when regions of pathology exhibit already elevated histone acetylation patterns and emphasize the importance of searching for alternative epigenetic targets in future therapeutic strategies aiming to rescue HD phenotypes.


Assuntos
Encéfalo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Doença de Huntington/genética , Doença de Huntington/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ovinos/genética , Ovinos/fisiologia
11.
Bioconjug Chem ; 31(7): 1724-1739, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32530288

RESUMO

This review covers the application of heptamethine cyanine dye (HMCD) mediated drug delivery. A relatively small number of HMCDs possess tumor targeting abilities, and this has spurred interest from research groups to explore them as drug delivery systems. Their tumor selectivity is primarily attributed to their uptake by certain isoforms of organic anion transporting polypeptides (OATPs) which are overexpressed in cancer tissues, although there are other possible mechanisms for the observed selectivity still under investigation. This specificity is confirmed using various cancer cell lines and is accompanied by moderate cytotoxicity. Their retention in tumor tissue is facilitated by the formation of albumin adducts as revealed by published mechanistic studies. HMCDs are also organelle selective dyes with specificity toward mitochondria and lysosomes, and with absorption and emission in the near-infrared region. This makes them valuable tools for biomedical imaging, especially in the field of fluorescence-guided tumor surgery. Furthermore, conjugating antitumor agents to HMCDs is providing novel drugs that await clinical testing. HMCD development as theranostic agents with dual tumor targeting and treatment capability signals a new approach to overcome drug resistance (mediated through evasion of efflux pumps) and systemic toxicity, the two parameters which have long plagued drug discovery.


Assuntos
Antineoplásicos/administração & dosagem , Carbocianinas/administração & dosagem , Corantes/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Linfoma de Burkitt/tratamento farmacológico , Carbocianinas/farmacologia , Carbocianinas/uso terapêutico , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Neoplasias Renais/tratamento farmacológico , Masculino , Medicina de Precisão , Neoplasias da Próstata/tratamento farmacológico
12.
Ann Neurol ; 85(3): 396-405, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30635944

RESUMO

OBJECTIVE: Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by variable motor and behavioral symptoms attributed to major neuropathology of mainly the basal ganglia and cerebral cortex. The role of the cerebellum, a brain region involved in the coordination of movements, in HD neuropathology has been controversial. This study utilizes postmortem human brain tissue to investigate whether Purkinje cell degeneration in the neocerebellum is present in HD, and how this relates to disease symptom profiles. METHODS: Unbiased stereological counting methods were used to quantify the total number of Purkinje cells in 15 HD cases and 8 neurologically normal control cases. Based on their predominant symptoms, the HD cases were categorized into 2 groups: "motor" or "mood." RESULTS: The results demonstrated a significant 43% loss of Purkinje cells in HD cases with predominantly motor symptoms, and no cell loss in cases showing a major mood phenotype. There was no significant correlation between Purkinje cell loss and striatal neuropathological grade, postmortem delay, CAG repeat in the IT15 gene, or age at death. INTERPRETATION: This study shows a compelling relationship between Purkinje cell loss in the HD neocerebellum and the HD motor symptom phenotype, which, together with our previous human brain studies on the same HD cases, provides novel perspectives interrelating and correlating the variable cerebellar, basal ganglia, and neocortical neuropathology with the variability of motor/mood symptom profiles in the human HD brain. ANN NEUROL 2019;85:396-405.


Assuntos
Cerebelo/patologia , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Doença de Huntington/psicologia , Células de Purkinje/patologia , Adulto , Idoso , Autopsia , Encéfalo/patologia , Estudos de Casos e Controles , Contagem de Células , Corpo Estriado/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/patologia , Fenótipo
13.
Bioorg Med Chem Lett ; 30(14): 127252, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527552

RESUMO

We describe the synthesis and in vitro activity of drug-dye conjugate 1, which is a combination of the PARP inhibitor rucaparib and heptamethine cyanine dye IR-786. The drug-dye conjugate 1 was evaluated in three different patient-derived glioblastoma cell lines and showed strong cytotoxic activity with nanomolar potency (EC50: 128 nM), which was a 780 fold improvement over rucaparib itself. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug for treatment for glioblastoma even though these cell lines were resistant to TMZ treatment. We envisage such conjugates to be worth exploring for their utility in the treatment of various brain cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Carbocianinas/farmacologia , Glioblastoma/tratamento farmacológico , Indóis/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carbocianinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Indóis/química , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Relação Estrutura-Atividade
14.
Neurobiol Dis ; 132: 104589, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31454549

RESUMO

Traditionally regarded to coordinate movement, the cerebellum also exerts non-motor functions including the regulation of cognitive and behavioral processing, suggesting a potential role in neurodegenerative conditions affecting cognition, such as Alzheimer's disease (AD). This study aims to investigate neuropathology and AD-related molecular changes within the neocerebellum using post-mortem human brain tissue microarrays (TMAs). Immunohistochemistry was conducted on neocerebellar paraffin-embedded TMAs from 24 AD and 24 matched control cases, and free-floating neocerebellar sections from 6 AD and 6 controls. Immunoreactivity was compared between control and AD groups for neuropathological hallmarks (amyloid-ß, tau, ubiquitin), Purkinje cells (calbindin), microglia (IBA1, HLA-DR), astrocytes (GFAP) basement-membrane associated molecules (fibronectin, collagen IV), endothelial cells (CD31/PECAM-1) and mural cells (PDGFRß, αSMA). Amyloid-ß expression (total immunolabel intensity) and load (area of immunolabel) was increased by >4-fold within the AD cerebellum. Purkinje cell counts, ubiquitin and tau immunoreactivity were unchanged in AD. IBA1 expression and load was increased by 91% and 69%, respectively, in AD, with no change in IBA1-positive cell number. IBA1-positive cell process length and branching was reduced by 22% and 41%, respectively, in AD. HLA-DR and GFAP immunoreactivity was unchanged in AD. HLA-DR-positive cell process length and branching was reduced by 33% and 49%, respectively, in AD. Fibronectin expression was increased by 27% in AD. Collagen IV, PDGFRß and αSMA immunoreactivity was unchanged in AD. The number of CD31-positive vessels was increased by 98% in AD, suggesting the increase in CD31 expression and load in AD is due to greater vessel number. The PDGFRß/CD31 load ratio was reduced by 59% in AD. These findings provide evidence of molecular changes affecting microglia and the neurovasculature within the AD neocerebellum. These changes, occurring without overt neuropathology, support the hypothesis of microglial and neurovascular dysfunction as drivers of AD, which has implications on the neocerebellar contribution to AD symptomatology and pathophysiology.


Assuntos
Barreira Hematoencefálica/patologia , Cerebelo/patologia , Microglia/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Autopsia , Barreira Hematoencefálica/metabolismo , Cerebelo/metabolismo , Feminino , Humanos , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade
15.
Bioorg Med Chem Lett ; 29(18): 2617-2621, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31378572

RESUMO

We describe the synthesis of drug-dye conjugate 1 between anaplastic lymphoma kinase inhibitor Crizotinib and heptamethine cyanine dye IR-786. The drug-dye conjugate 1 was evaluated in three different patient-derived glioblastoma cell lines and showed potent cytotoxic activity with nanomolar potency (EC50: 50.9 nM). We also demonstrate evidence for antiproliferative activity of 1 with single digit nanomolar potency (IC50: 4.7 nM). Furthermore, the cytotoxic effects conveyed a dramatic, 110-fold improvement over Crizotinib. This improvement was even more pronounced (492-fold) when 1 was combined with Temozolomide, the standard drug for treatment for glioblastoma. This work lays the foundation for future exploration of similar tyrosine kinase inhibitor drug-dye conjugates for the treatment of glioblastoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Carbocianinas/farmacologia , Crizotinibe/farmacologia , Citostáticos/farmacologia , Corantes Fluorescentes/farmacologia , Glioblastoma/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Carbocianinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crizotinibe/química , Citostáticos/síntese química , Citostáticos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Humanos , Estrutura Molecular , Imagem Óptica , Relação Estrutura-Atividade
16.
J Neuroinflammation ; 15(1): 138, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751771

RESUMO

BACKGROUND: Pericytes and endothelial cells are critical cellular components of the blood-brain barrier (BBB) and play an important role in neuroinflammation. To date, the majority of inflammation-related studies in endothelia and pericytes have been carried out using immortalised cell lines or non-human-derived cells. Whether these are representative of primary human cells is unclear and systematic comparisons of the inflammatory responses of primary human brain-derived pericytes and endothelia has yet to be performed. METHODS: To study the effects of neuroinflammation at the BBB, primary brain endothelial cells and pericytes were isolated from human biopsy tissue. Culture purity was examined using qPCR and immunocytochemistry. Electrical cell-substrate impedance sensing (ECIS) was used to determine the barrier properties of endothelial and pericyte cultures. Using immunocytochemistry, cytometric bead array, and ECIS, we compared the responses of endothelia and pericytes to a panel of inflammatory stimuli (IL-1ß, TNFα, LPS, IFN-γ, TGF-ß1, IL-6, and IL-4). Secretome analysis was performed to identify unique secretions of endothelia and pericytes in response to IL-1ß. RESULTS: Endothelial cells were pure, moderately proliferative, retained the expression of BBB-related junctional proteins and transporters, and generated robust TEER. Both endothelia and pericytes have the same pattern of transcription factor activation in response to inflammatory stimuli but respond differently at the secretion level. Secretome analysis confirmed that endothelia and pericytes have overlapping but distinct secretome profiles in response to IL-1ß. We identified several cell-type specific responses, including G-CSF and GM-CSF (endothelial-specific), and IGFBP2 and IGFBP3 (pericyte-specific). Finally, we demonstrated that direct addition of IL-1ß, TNFα, LPS, and IL-4 contributed to the loss of endothelial barrier integrity in vitro. CONCLUSIONS: Here, we identify important cell-type differences in the inflammatory response of brain pericytes and endothelia and provide, for the first time, a comprehensive profile of the secretions of primary human brain endothelia and pericytes which has implications for understanding how inflammation affects the cerebrovasculature.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Pericitos/metabolismo , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/farmacologia , Pericitos/efeitos dos fármacos
17.
BMC Neurosci ; 19(1): 6, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29471788

RESUMO

BACKGROUND: Brain pericytes ensheathe the endothelium and contribute to formation and maintenance of the blood-brain-barrier. Additionally, pericytes are involved in several aspects of the CNS immune response including scarring, adhesion molecule expression, chemokine secretion, and phagocytosis. In vitro cultures are routinely used to investigate these functions of brain pericytes, however, these are highly plastic cells and can display differing phenotypes and functional responses depending on their culture conditions. Here we sought to investigate how two commonly used culture media, high serum containing DMEM/F12 and low serum containing Pericyte Medium (ScienCell), altered the phenotype of human brain pericytes and neuroinflammatory responses. METHODS: Pericytes were isolated from adult human brain biopsy tissue and cultured in DMEM/F12 (D-pericytes) or Pericyte Medium (P-pericytes). Immunocytochemistry, qRT-PCR, and EdU incorporation were used to determine how this altered their basal phenotype, including the expression of pericyte markers, proliferation, and cell morphology. To determine whether culture media altered the inflammatory response in human brain pericytes, immunocytochemistry, qRT-PCR, cytometric bead arrays, and flow cytometry were used to investigate transcription factor induction, chemokine secretion, adhesion molecule expression, migration, phagocytosis, and response to inflammatory-related growth factors. RESULTS: P-pericytes displayed elevated proliferation and a distinct bipolar morphology compared to D-pericytes. Additionally, P-pericytes displayed lower expression of pericyte-associated markers NG2, PDGFRß, and fibronectin, with notably lower αSMA, CD146, P4H and desmin, and higher Col-IV expression. Nuclear NF-kB translocation in response to IL-1ß stimulation was observed in both cultures, however, P-pericytes displayed elevated expression of the transcription factor C/EBPδ, and lower expression of the adhesion molecule ICAM-1. P-pericytes displayed elevated phagocytic and migratory ability. Both cultures responded similarly to stimulation by the growth factors TGFß1 and PDGF-BB. CONCLUSIONS: Despite differences in their phenotype and magnitude of response, both P-pericytes and D-pericytes responded similarly to all examined functions, indicating that the neuroinflammatory phenotype of these cells is robust to culture conditions.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Regulação da Expressão Gênica/fisiologia , Pericitos/patologia , Pericitos/fisiologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Células Cultivadas , Citocinas/metabolismo , Fibronectinas/metabolismo , Humanos , Interleucina-1beta/metabolismo
18.
Brain ; 140(2): 353-369, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27956400

RESUMO

Ischaemic stroke induces endogenous repair processes that include proliferation and differentiation of neural stem cells and extensive rewiring of the remaining neural connections, yet about 50% of stroke survivors live with severe long-term disability. There is an unmet need for drug therapies to improve recovery by promoting brain plasticity in the subacute to chronic phase after ischaemic stroke. We previously showed that complement-derived peptide C3a regulates neural progenitor cell migration and differentiation in vitro and that C3a receptor signalling stimulates neurogenesis in unchallenged adult mice. To determine the role of C3a-C3a receptor signalling in ischaemia-induced neural plasticity, we subjected C3a receptor-deficient mice, GFAP-C3a transgenic mice expressing biologically active C3a in the central nervous system, and their respective wild-type controls to photothrombotic stroke. We found that C3a overexpression increased, whereas C3a receptor deficiency decreased post-stroke expression of GAP43 (P < 0.01), a marker of axonal sprouting and plasticity, in the peri-infarct cortex. To verify the translational potential of these findings, we used a pharmacological approach. Daily intranasal treatment of wild-type mice with C3a beginning 7 days after stroke induction robustly increased synaptic density (P < 0.01) and expression of GAP43 in peri-infarct cortex (P < 0.05). Importantly, the C3a treatment led to faster and more complete recovery of forepaw motor function (P < 0.05). We conclude that C3a-C3a receptor signalling stimulates post-ischaemic neural plasticity and intranasal treatment with C3a receptor agonists is an attractive approach to improve functional recovery after ischaemic brain injury.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Complemento C3a/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Administração Intranasal , Animais , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/etiologia , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/genética , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/genética , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/genética , Desempenho Psicomotor/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sinapsinas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
19.
Exp Cell Res ; 355(1): 26-39, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341445

RESUMO

Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration.


Assuntos
Movimento Celular/efeitos dos fármacos , Insulina/farmacologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/antagonistas & inibidores , Animais , Bovinos , Relação Dose-Resposta a Droga , Humanos , Insulina/química , Pâncreas/química , Ácidos Siálicos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
Biochim Biophys Acta ; 1862(9): 1650-62, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27267344

RESUMO

Huntington's disease (HD) is a genetically-mediated neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein (Htt) through lengthening of its polyglutamine tract, thus initiating a cascade that ultimately leads to premature death. However, neurodegeneration typically manifests in HD only in middle age, and mechanisms linking the causative mutation to brain disease are poorly understood. Brain metabolism is severely perturbed in HD, and some studies have indicated a potential role for mutant Htt as a driver of these metabolic aberrations. Here, our objective was to determine the effects of HD on brain metabolism by measuring levels of polar metabolites in regions known to undergo varying degrees of damage. We performed gas-chromatography/mass spectrometry-based metabolomic analyses in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine matched controls. In each patient, we measured metabolite content in representative tissue-samples from eleven brain regions that display varying degrees of damage in HD, thus identifying the presence and abundance of 63 different metabolites from several molecular classes, including carbohydrates, amino acids, nucleosides, and neurotransmitters. Robust alterations in regional brain-metabolite abundances were observed in HD patients: these included changes in levels of small molecules that play important roles as intermediates in the tricarboxylic-acid and urea cycles, and amino-acid metabolism. Our findings point to widespread disruption of brain metabolism and indicate a complex phenotype beyond the gradient of neuropathologic damage observed in HD brain.


Assuntos
Encéfalo/metabolismo , Doença de Huntington/metabolismo , Idoso , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Doença de Huntington/patologia , Masculino , Redes e Vias Metabólicas , Metaboloma , Metabolômica , Pessoa de Meia-Idade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA