RESUMO
53BP1 influences genome stability via two independent mechanisms: (1) regulating DNA double-strand break (DSB) repair and (2) enhancing p53 activity. We discovered a protein, Tudor-interacting repair regulator (TIRR), that associates with the 53BP1 Tudor domain and prevents its recruitment to DSBs. Here, we elucidate how TIRR affects 53BP1 function beyond its recruitment to DSBs and biochemically links the two distinct roles of 53BP1. Loss of TIRR causes an aberrant increase in the gene transactivation function of p53, affecting several p53-mediated cell-fate programs. TIRR inhibits the complex formation between the Tudor domain of 53BP1 and a dimethylated form of p53 (K382me2) that is poised for transcriptional activation of its target genes. TIRR mRNA expression levels negatively correlate with the expression of key p53 target genes in breast and prostate cancers. Further, TIRR loss is selectively not tolerated in p53-proficient tumors. Therefore, we establish that TIRR is an important inhibitor of the 53BP1-p53 complex.
Assuntos
Linhagem da Célula/genética , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula/fisiologia , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/metabolismo , Humanos , Ligação Proteica , Proteínas de Ligação a RNA/fisiologia , Domínio Tudor , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/fisiologiaRESUMO
Limited DNA end resection is the key to impaired homologous recombination in BRCA1-mutant cancer cells. Here, using a loss-of-function CRISPR screen, we identify DYNLL1 as an inhibitor of DNA end resection. The loss of DYNLL1 enables DNA end resection and restores homologous recombination in BRCA1-mutant cells, thereby inducing resistance to platinum drugs and inhibitors of poly(ADP-ribose) polymerase. Low BRCA1 expression correlates with increased chromosomal aberrations in primary ovarian carcinomas, and the junction sequences of somatic structural variants indicate diminished homologous recombination. Concurrent decreases in DYNLL1 expression in carcinomas with low BRCA1 expression reduced genomic alterations and increased homology at lesions. In cells, DYNLL1 limits nucleolytic degradation of DNA ends by associating with the DNA end-resection machinery (MRN complex, BLM helicase and DNA2 endonuclease). In vitro, DYNLL1 binds directly to MRE11 to limit its end-resection activity. Therefore, we infer that DYNLL1 is an important anti-resection factor that influences genomic stability and responses to DNA-damaging chemotherapy.
Assuntos
Proteína BRCA1/deficiência , Dineínas do Citoplasma/metabolismo , DNA/metabolismo , Genes BRCA1 , Proteína Homóloga a MRE11/metabolismo , Reparo de DNA por Recombinação , Proteína BRCA1/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Edição de Genes , Instabilidade Genômica/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Humanos , Mutação , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Platina/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica , Reparo de DNA por Recombinação/efeitos dos fármacos , Fatores de Transcrição/metabolismoRESUMO
P53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, the protein kinase ataxia-telangiectasia mutated (ATM) phosphorylates 53BP1 and recruits RAP1-interacting factor 1 (RIF1) to dissociate the 53BP1-TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to double-strand breaks. Depletion of TIRR destabilizes 53BP1 in the nuclear-soluble fraction and alters the double-strand break-induced protein complex centring 53BP1. These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.
Assuntos
Proteínas de Transporte/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Feminino , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/químicaRESUMO
Excluding 53BP1 from chromatin is required to attenuate the DNA damage response during mitosis, yet the functional relevance and regulation of this exclusion are unclear. Here we show that 53BP1 is phosphorylated during mitosis on two residues, T1609 and S1618, located in its well-conserved ubiquitination-dependent recruitment (UDR) motif. Phosphorylating these sites blocks the interaction of the UDR motif with mononuclesomes containing ubiquitinated histone H2A and impedes binding of 53BP1 to mitotic chromatin. Ectopic recruitment of 53BP1-T1609A/S1618A to mitotic DNA lesions was associated with significant mitotic defects that could be reversed by inhibiting nonhomologous end-joining. We also reveal that protein phosphatase complex PP4C/R3ß dephosphorylates T1609 and S1618 to allow the recruitment of 53BP1 to chromatin in G1 phase. Our results identify key sites of 53BP1 phosphorylation during mitosis, identify the counteracting phosphatase complex that restores the potential for DDR during interphase, and establish the physiological importance of this regulation.
Assuntos
Quebras de DNA de Cadeia Dupla , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Fase G1 , Células HeLa , Humanos , Mitose , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Proteína 1 de Ligação à Proteína Supressora de Tumor p53RESUMO
The histone variant H3.3 marks active chromatin by replacing the conventional histone H3.1. In this study, we investigate the detailed mechanism of H3.3 replication-independent deposition. We found that the death domain-associated protein DAXX and the chromatin remodeling factor ATRX (alpha-thalassemia/mental retardation syndrome protein) are specifically associated with the H3.3 deposition machinery. Bacterially expressed DAXX has a marked binding preference for H3.3 and assists the deposition of (H3.3-H4)(2) tetramers on naked DNA, thus showing that DAXX is a H3.3 histone chaperone. In DAXX-depleted cells, a fraction of H3.3 was found associated with the replication-dependent machinery of deposition, suggesting that cells adapt to the depletion. The reintroduced DAXX in these cells colocalizes with H3.3 into the promyelocytic leukemia protein (PML) bodies. Moreover, DAXX associates with pericentric DNA repeats, and modulates the transcription from these repeats through assembly of H3.3 nucleosomes. These findings establish a new link between the PML bodies and the regulation of pericentric DNA repeat chromatin structure. Taken together, our data demonstrate that DAXX functions as a bona fide histone chaperone involved in the replication-independent deposition of H3.3.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Correpressoras , DNA Helicases/metabolismo , Células HeLa , Heterocromatina/metabolismo , Humanos , Camundongos , Chaperonas Moleculares , Complexos Multiproteicos , Proteínas Nucleares/genética , Nucleossomos/metabolismo , Estabilidade Proteica , Fatores de Transcrição/metabolismo , Proteína Nuclear Ligada ao XRESUMO
Tudor Interacting Repair Regulator (TIRR) is an RNA-binding protein (RBP) that interacts directly with 53BP1, restricting its access to DNA double-strand breaks (DSBs) and its association with p53. We utilized iCLIP to identify RNAs that directly bind to TIRR within cells, identifying the long non-coding RNA NEAT1 as the primary RNA partner. The high affinity of TIRR for NEAT1 is due to prevalent G-rich motifs in the short isoform (NEAT1_1) region of NEAT1. This interaction destabilizes the TIRR/53BP1 complex, promoting 53BP1's function. NEAT1_1 is enriched during the G1 phase of the cell cycle, thereby ensuring that TIRR-dependent inhibition of 53BP1's function is cell cycle-dependent. TDP-43, an RBP that is implicated in neurodegenerative diseases, modulates the TIRR/53BP1 complex by promoting the production of the NEAT1 short isoform, NEAT1_1. Together, we infer that NEAT1_1, and factors regulating NEAT1_1, may impact 53BP1-dependent DNA repair processes, with implications for a spectrum of diseases.
Assuntos
Proteínas de Ligação a DNA , RNA Longo não Codificante , Proteínas de Ligação a RNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Instabilidade Genômica , Quebras de DNA de Cadeia Dupla , Células HEK293 , Ligação Proteica , Reparo do DNA , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genéticaRESUMO
It is unclear whether metabolic health corresponds to reduced oncogenesis or vice versa. We study Tudor-interacting repair regulator (TIRR), an inhibitor of p53 binding protein 1 (53BP1)-mediated p53 activation, and the physiological consequences of enhancing tumor suppressor activity. Deleting TIRR selectively activates p53, significantly protecting against cancer but leading to a systemic metabolic imbalance in mice. TIRR-deficient mice are overweight and insulin resistant, even under normal chow diet. Similarly, reduced TIRR expression in human adipose tissue correlates with higher BMI and insulin resistance. Despite the metabolic challenges, TIRR loss improves p53 heterozygous (p53HET) mouse survival and correlates with enhanced progression-free survival in patients with various p53HET carcinomas. Finally, TIRR's oncoprotective and metabolic effects are dependent on p53 and lost upon p53 deletion in TIRR-deficient mice, with glucose homeostasis and orexigenesis being primarily regulated by TIRR expression in the adipose tissue and the CNS, respectively, as evidenced by tissue-specific models. In summary, TIRR deletion provides a paradigm of metabolic deregulation accompanied by reduced oncogenesis.
Assuntos
Carcinogênese , Proteínas de Ligação a RNA , Proteína Supressora de Tumor p53 , Animais , Humanos , Masculino , Camundongos , Tecido Adiposo/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Glucose/metabolismo , Resistência à Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ligação a RNA/metabolismoRESUMO
The recruitment of 53BP1 to chromatin, mediated by its recognition of histone H4 dimethylated at lysine 20 (H4K20me2), is important for DNA double-strand break repair. Using a series of small molecule antagonists, we demonstrate a conformational equilibrium between an open and a pre-existing lowly populated closed state of 53BP1 in which the H4K20me2 binding surface is buried at the interface between two interacting 53BP1 molecules. In cells, these antagonists inhibit the chromatin recruitment of wild type 53BP1, but do not affect 53BP1 variants unable to access the closed conformation despite preservation of the H4K20me2 binding site. Thus, this inhibition operates by shifting the conformational equilibrium toward the closed state. Our work therefore identifies an auto-associated form of 53BP1-autoinhibited for chromatin binding-that can be stabilized by small molecule ligands encapsulated between two 53BP1 protomers. Such ligands are valuable research tools to study the function of 53BP1 and have the potential to facilitate the development of new drugs for cancer therapy.
Assuntos
Cromatina , Histonas , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/metabolismo , Engenharia de Proteínas , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , HumanosRESUMO
The recruitment of 53BP1 to chromatin, mediated by its recognition of histone H4 dimethylated at lysine 20 (H4K20me2), is important for DNA double-strand break repair. Using a series of small molecule antagonists, we demonstrate a conformational equilibrium between an open and a pre-existing lowly populated closed state of 53BP1 in which the H4K20me2 binding surface is buried at the interface between two interacting 53BP1 molecules. In cells, these antagonists inhibit the chromatin recruitment of wild type 53BP1, but do not affect 53BP1 variants unable to access the closed conformation despite preservation of the H4K20me2 binding site. Thus, this inhibition operates by shifting the conformational equilibrium toward the closed state. Our work therefore identifies an auto-associated form of 53BP1 - autoinhibited for chromatin binding - that can be stabilized by small molecule ligands encapsulated between two 53BP1 protomers. Such ligands are valuable research tools to study the function of 53BP1 and have the potential to facilitate the development of new drugs for cancer therapy.
RESUMO
Recent data showed that p53 stimulates the expression of genes encoding not only pro- but also antioxidant enzymes. It was suggested that antioxidant genes could be induced under physiologic levels of stress while the prooxidant ones respond to higher level of stress. Results presented in this article illustrate an additional degree of complexity. We show that the expression of Haeme-oxygenase 1 (HO-1), a stress-inducible gene that codes for an enzyme having antioxidant properties, is stimulated in a p53-dependent manner in the thymus and spleen of irradiated mice. We prove that HO-1 is a direct p53 target gene by showing that the p53RE identified within human and mouse genes is specifically bound by p53. The threshold of irradiation dose required to induce a significant response of HO-1 in the lymphoid organs of the irradiated mice is higher than that for Waf1/p21 that encodes an universal inhibitor of cell cycle. Moreover, induction of HO-1 occurs later than that of Waf1/p21. Finally, the higher stimulation of HO-1 is reached when Waf1/p21 stimulation starts to decrease.
Assuntos
Raios gama , Heme Oxigenase-1/genética , Baço/efeitos da radiação , Timo/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Relação Dose-Resposta à Radiação , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Heme Oxigenase-1/metabolismo , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Ratos , Homologia de Sequência do Ácido Nucleico , Baço/metabolismo , Timo/metabolismoRESUMO
Mutations in the XPD subunit of TFIIH give rise to human genetic disorders initially defined as DNA repair syndromes. Nevertheless, xeroderma pigmentosum (XP) group D (XP-D) patients develop clinical features such as hypoplasia of the adipose tissue, implying a putative transcriptional defect. Knowing that peroxisome proliferator-activated receptors (PPARs) are implicated in lipid metabolism, we investigated the expression of PPAR target genes in the adipose tissues and the livers of XPD-deficient mice and found that (i) some genes are abnormally overexpressed in a ligand-independent manner which parallels an increase in the recruitment of RNA polymerase (pol) II but not PPARs on their promoter and (ii) upon treatment with PPAR ligands, other genes are much less induced compared to the wild type, which is due to a lower recruitment of both PPARs and RNA pol II. The defect in transactivation by PPARs is likely attributable to their weaker phosphorylation by the cdk7 kinase of TFIIH. Having identified the phosphorylated residues in PPAR isotypes, we demonstrate how their transactivation defect in XPD-deficient cells can be circumvented by overexpression of either a wild-type XPD or a constitutively phosphorylated PPAR S/E. This work emphasizes that underphosphorylation of PPARs affects their transactivation and consequently the expression of PPAR target genes, thus contributing in part to the XP-D phenotype.
Assuntos
Tecido Adiposo/anormalidades , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , PPAR alfa/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/genética , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , DNA Helicases/deficiência , Proteínas de Ligação a DNA/deficiência , Fígado/metabolismo , Camundongos , Camundongos Mutantes , Mutação , PPAR alfa/análise , PPAR alfa/genética , PPAR gama/análise , PPAR gama/genética , Fosforilação , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Fator de Transcrição TFIIH , Fatores de Transcrição/deficiência , Fatores de Transcrição TFII/deficiência , Fatores de Transcrição TFII/genética , Proteína Grupo D do Xeroderma PigmentosoRESUMO
BRCA1/2-mutated ovarian cancers (OCs) are defective in homologous recombination repair (HRR) of double-strand breaks (DSBs) and thereby sensitive to platinum and PARP inhibitors (PARPis). Multiple PARPis have recently received US Food and Drug Administration (FDA) approval for treatment of OCs, and resistance to PARPis is a major clinical problem. Utilizing primary and recurrent BRCA1/2-mutated carcinomas from OC patients, patient-derived lines, and an in vivo BRCA2-mutated mouse model, we identified a microRNA, miR-493-5p, that induced platinum/PARPi resistance exclusively in BRCA2-mutated carcinomas. However, in contrast to the most prevalent resistance mechanisms in BRCA mutant carcinomas, miR-493-5p did not restore HRR. Expression of miR-493-5p in BRCA2-mutated/depleted cells reduced levels of nucleases and other factors involved in maintaining genomic stability. This resulted in relatively stable replication forks, diminished single-strand annealing of DSBs, and increased R-loop formation. We conclude that impact of miR-493-5p on multiple pathways pertinent to genome stability cumulatively causes PARPi/platinum resistance in BRCA2 mutant carcinomas.
Assuntos
Carcinoma/genética , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Instabilidade Genômica , MicroRNAs/genética , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Proteína BRCA2/genética , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Recombinação Homóloga , Humanos , Camundongos , MicroRNAs/metabolismo , Mutação , Neoplasias Ovarianas/tratamento farmacológicoRESUMO
Dynamic protein interaction networks such as DNA double-strand break (DSB) signaling are modulated by post-translational modifications. The DNA repair factor 53BP1 is a rare example of a protein whose post-translational modification-binding function can be switched on and off. 53BP1 is recruited to DSBs by recognizing histone lysine methylation within chromatin, an activity directly inhibited by the 53BP1-binding protein TIRR. X-ray crystal structures of TIRR and a designer protein bound to 53BP1 now reveal a unique regulatory mechanism in which an intricate binding area centered on an essential TIRR arginine residue blocks the methylated-chromatin-binding surface of 53BP1. A 53BP1 separation-of-function mutation that abolishes TIRR-mediated regulation in cells renders 53BP1 hyperactive in response to DSBs, highlighting the key inhibitory function of TIRR. This 53BP1 inhibition is relieved by TIRR-interacting RNA molecules, providing proof-of-principle of RNA-triggered 53BP1 recruitment to DSBs.
Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Cristalografia por Raios X , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Engenharia de Proteínas , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Pirofosfatases/química , Pirofosfatases/genética , Pirofosfatases/metabolismo , Proteínas de Ligação a RNA/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genéticaRESUMO
PURPOSE: Gamma-irradiation leads to activation of p53 tumour suppressor gene and to p53-dependant stimulation of a large panel of cellular genes including proapoptotic genes involved in intrinsic and extrinsic pathways. Most in vivo published data referred to high (lethal) irradiation doses. The present study was performed to analyse the p53-dependent response to more relevant low irradiation doses. MATERIALS AND METHODS: Mice were whole body exposed to irradiation doses decreasing from 5 - 0.05 Gy. Gene expression was estimated by real time reverse transcriptase polymerase chain reaction measurements on RNA extracted from thymus and spleen. Apoptosis was evaluated by the percentage of either annexin V positive or sub-G1 cells. RESULTS: A 0.1 Gy irradiation dose already gives a significant stimulation of Puma (p53 up-regulated modulator of apoptosis), and 0.2 Gy of Bax (Bcl-2-associated X protein) and Killer/DR5 (Death Receptor 5). The expression of genes involved in the two apoptotic pathways was induced as soon as 1 h post-irradiation and reached a maximum at 3 h, the induction level depending on both the gene and the organ. A significant increase in the number of apoptotic cells is already detectable at 0.5 Gy with a maximum of induction at 6 h. CONCLUSIONS: Our results reveal the high in vivo sensitivity of p53-dependent transcriptional activation of genes involved in the two main apoptotic pathways, their stimulation preceding the induction of apoptosis.
Assuntos
Apoptose/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Baço/efeitos da radiação , Timo/efeitos da radiação , Proteína Supressora de Tumor p53/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Relação Dose-Resposta à Radiação , Raios gama , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , RNA Mensageiro/análise , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Baço/metabolismo , Baço/patologia , Timo/metabolismo , Timo/patologia , Proteínas Supressoras de Tumor/genética , Irradiação Corporal Total , Proteína bcl-X/genéticaRESUMO
As nanoparticle solutions move towards human clinical trials in radiation therapy, the influence of key clinical beam parameters on therapeutic efficacy must be considered. In this study, we have investigated the clinical radiation therapy delivery variables that may significantly affect nanoparticle-mediated radiation dose amplification. We found a benefit for situations which increased the proportion of low energy photons in the incident beam. Most notably, "unflattened" photon beams from a clinical linear accelerator results in improved outcomes relative to conventional "flat" beams. This is measured by significant DNA damage, tumor growth suppression, and overall improvement in survival in a pancreatic tumor model. These results, obtained in a clinical setting, clearly demonstrate the influence and importance of radiation therapy parameters that will impact clinical radiation dose amplification with nanoparticles.
RESUMO
Radiation therapy is a major treatment regimen for more than 50% of cancer patients. The collateral damage induced on healthy tissues during radiation and the minimal therapeutic effect on the organ-of-interest (target) is a major clinical concern. Ultra-small, renal clearable, silica based gadolinium chelated nanoparticles (SiGdNP) provide simultaneous MR contrast and radiation dose enhancement. The high atomic number of gadolinium provides a large photoelectric cross-section for increased photon interaction, even for high-energy clinical radiation beams. Imaging and therapy functionality of SiGdNP were tested in cynomolgus monkeys and pancreatic tumor-bearing mice models, respectively. A significant improvement in tumor cell damage (double strand DNA breaks), growth suppression, and overall survival under clinical radiation therapy conditions were observed in a human pancreatic xenograft model. For the first time, safe systemic administration and systematic renal clearance was demonstrated in both tested species. These findings strongly support the translational potential of SiGdNP for MR-guided radiation therapy in cancer treatment.
Assuntos
Gadolínio/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Radiossensibilizantes/uso terapêutico , Radioterapia Guiada por Imagem/métodos , Dióxido de Silício/uso terapêutico , Animais , Dano ao DNA/efeitos da radiação , Feminino , Gadolínio/química , Gadolínio/farmacocinética , Lasers , Macaca fascicularis , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Nanopartículas/análise , Nanopartículas/química , Neoplasias/genética , Neoplasias/patologia , Radiossensibilizantes/química , Radiossensibilizantes/farmacocinética , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Nanomedicina Teranóstica/métodosRESUMO
The phenotype of the human genetic disorder Cockayne syndrome (CS) is not only due to DNA repair defect but also (and perhaps essentially) to a severe transcription initiation defect. After UV irradiation, even undamaged genes are not transcribed in CSB cells. Indeed, neither RNA pol II nor the associated basal transcription factors are recruited to the promoters of the housekeeping genes, around of which histone H4 acetylation is also deficient. Transfection of CSB restores the recruitment process of RNA pol II. On the contrary, the p53-responsive genes do not require CSB and are transcribed in both wild-type and CSB cells upon DNA damage. Altogether, our data highlight the pivotal role of CSB in initiating the transcriptional program of certain genes after UV irradiation, and also may explain some of the complex traits of CS patients.