Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 608(7923): 609-617, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948633

RESUMO

Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1-9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies.


Assuntos
Éxons , Deleção de Genes , Terapia de Alvo Molecular , Neoplasias , Oncogenes , Inibidores de Proteínas Quinases , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Éxons/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
2.
Genes Dev ; 34(3-4): 179-193, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879358

RESUMO

The GATA-type zinc finger transcription factor TRPS1 has been implicated in breast cancer. However, its precise role remains unclear, as both amplifications and inactivating mutations in TRPS1 have been reported. Here, we used in vitro and in vivo loss-of-function approaches to dissect the role of TRPS1 in mammary gland development and invasive lobular breast carcinoma, which is hallmarked by functional loss of E-cadherin. We show that TRPS1 is essential in mammary epithelial cells, since TRPS1-mediated suppression of interferon signaling promotes in vitro proliferation and lactogenic differentiation. Similarly, TRPS1 expression is indispensable for proliferation of mammary organoids and in vivo survival of luminal epithelial cells during mammary gland development. However, the consequences of TRPS1 loss are dependent on E-cadherin status, as combined inactivation of E-cadherin and TRPS1 causes persistent proliferation of mammary organoids and accelerated mammary tumor formation in mice. Together, our results demonstrate that TRPS1 can function as a context-dependent tumor suppressor in breast cancer, while being essential for growth and differentiation of normal mammary epithelial cells.


Assuntos
Neoplasias da Mama/fisiopatologia , Carcinogênese/genética , Diferenciação Celular/genética , Células Epiteliais/citologia , Proteínas Repressoras/metabolismo , Animais , Neoplasias da Mama/genética , Caderinas/genética , Sobrevivência Celular/genética , Cromatina/genética , Cromatina/metabolismo , Modelos Animais de Doenças , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Ligação Proteica/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética
3.
Nature ; 572(7770): 538-542, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367040

RESUMO

Cancer-associated systemic inflammation is strongly linked to poor disease outcome in patients with cancer1,2. For most human epithelial tumour types, high systemic neutrophil-to-lymphocyte ratios are associated with poor overall survival3, and experimental studies have demonstrated a causal relationship between neutrophils and metastasis4,5. However, the cancer-cell-intrinsic mechanisms that dictate the substantial heterogeneity in systemic neutrophilic inflammation between tumour-bearing hosts are largely unresolved. Here, using a panel of 16 distinct genetically engineered mouse models for breast cancer, we uncover a role for cancer-cell-intrinsic p53 as a key regulator of pro-metastatic neutrophils. Mechanistically, loss of p53 in cancer cells induced the secretion of WNT ligands that stimulate tumour-associated macrophages to produce IL-1ß, thus driving systemic inflammation. Pharmacological and genetic blockade of WNT secretion in p53-null cancer cells reverses macrophage production of IL-1ß and subsequent neutrophilic inflammation, resulting in reduced metastasis formation. Collectively, we demonstrate a mechanistic link between the loss of p53 in cancer cells, secretion of WNT ligands and systemic neutrophilia that potentiates metastatic progression. These insights illustrate the importance of the genetic makeup of breast tumours in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for patients with cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Inflamação/genética , Inflamação/patologia , Metástase Neoplásica/patologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteínas Wnt/metabolismo , Animais , Neoplasias da Mama/complicações , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Inflamação/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Camundongos , Neutrófilos/imunologia
4.
EMBO J ; 39(5): e102169, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31930530

RESUMO

Genetically engineered mouse models (GEMMs) of cancer have proven to be of great value for basic and translational research. Although CRISPR-based gene disruption offers a fast-track approach for perturbing gene function and circumvents certain limitations of standard GEMM development, it does not provide a flexible platform for recapitulating clinically relevant missense mutations in vivo. To this end, we generated knock-in mice with Cre-conditional expression of a cytidine base editor and tested their utility for precise somatic engineering of missense mutations in key cancer drivers. Upon intraductal delivery of sgRNA-encoding vectors, we could install point mutations with high efficiency in one or multiple endogenous genes in situ and assess the effect of defined allelic variants on mammary tumorigenesis. While the system also produces bystander insertions and deletions that can stochastically be selected for when targeting a tumor suppressor gene, we could effectively recapitulate oncogenic nonsense mutations. We successfully applied this system in a model of triple-negative breast cancer, providing the proof of concept for extending this flexible somatic base editing platform to other tissues and tumor types.


Assuntos
Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Edição de Genes , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Mutação
5.
Genes Dev ; 30(12): 1470-80, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27340177

RESUMO

Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Carcinoma Lobular/genética , Carcinoma Lobular/fisiopatologia , Edição de Genes , Glândulas Mamárias Humanas/fisiopatologia , Animais , Sistemas CRISPR-Cas , Caderinas/genética , Modelos Animais de Doenças , Feminino , Inativação Gênica , Genes Supressores de Tumor , Humanos , Camundongos
7.
J Mammary Gland Biol Neoplasia ; 24(4): 305-321, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31729597

RESUMO

Approximately 75% of all breast cancers express the nuclear hormone receptor estrogen receptor α (ERα). However, the majority of mammary tumors from genetically engineered mouse models (GEMMs) are ERα-negative. To model ERα-positive breast cancer in mice, we exogenously introduced expression of mouse and human ERα in an existing GEMM of p53-deficient breast cancer. After initial ERα expression during mammary gland development, expression was reduced or lost in adult glands and p53-deficient mammary tumors. Chromatin immunoprecipitation (ChIP)-sequencing analysis of primary mouse mammary epithelial cells (MMECs) derived from these models, in which expression of the ERα constructs was induced in vitro, confirmed interaction of ERα with the DNA. In human breast and endometrial cancer, and also in healthy breast tissue, DNA binding of ERα is facilitated by the pioneer factor FOXA1. Surprisingly, the ERα binding sites identified in primary MMECs, but also in mouse mammary gland and uterus, showed an high enrichment of ERE motifs, but were devoid of Forkhead motifs. Furthermore, exogenous introduction of FOXA1 and GATA3 in ERα-expressing MMECs was not sufficient to promote ERα-responsiveness of these cells. Together, this suggests that species-specific differences in pioneer factor usage between mouse and human are dictated by the DNA sequence, resulting in ERα-dependencies in mice that are not FOXA1 driven. These species-specific differences in ERα-biology may limit the utility of mice for in vivo modeling of ERα-positive breast cancer.


Assuntos
Células Epiteliais/patologia , Receptor alfa de Estrogênio/metabolismo , Fator de Transcrição GATA3/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Neoplasias Mamárias Animais/patologia , Proteína Supressora de Tumor p53/deficiência , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Fator de Transcrição GATA3/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Proteína Supressora de Tumor p53/genética
8.
Proc Natl Acad Sci U S A ; 112(27): 8409-14, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100884

RESUMO

Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics.


Assuntos
Proteína BRCA1/deficiência , Neoplasias Mamárias Experimentais/tratamento farmacológico , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Proteína BRCA1/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinossarcoma/tratamento farmacológico , Carcinossarcoma/genética , Carcinossarcoma/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli(ADP-Ribose) Polimerases/metabolismo , Proto-Oncogene Mas , Análise de Sobrevida
9.
Sci Adv ; 9(22): eadf4409, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256941

RESUMO

DNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases. Our knowledge on the precise coordination of this process remains incomplete. Here, we designed complementary genetic screens to map the machinery involved in the response to ICLs and identified FIRRM/C1orf112 as an indispensable factor in maintaining genome stability. FIRRM deficiency leads to hypersensitivity to ICL-inducing compounds, accumulation of DNA damage during S-G2 phase of the cell cycle, and chromosomal aberrations, and elicits a unique mutational signature previously observed in HR-deficient tumors. In addition, FIRRM is recruited to ICLs, controls MUS81 chromatin loading, and thereby affects resolution of HR intermediates. FIRRM deficiency in mice causes early embryonic lethality and accelerates tumor formation. Thus, FIRRM plays a critical role in the response to ICLs encountered during DNA replication.


Assuntos
Dano ao DNA , Reparo do DNA , Animais , Camundongos , Replicação do DNA , Recombinação Homóloga , DNA
10.
Nat Commun ; 14(1): 183, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635273

RESUMO

Cancer-associated fibroblasts (CAFs) are abundantly present in the microenvironment of virtually all tumors and strongly impact tumor progression. Despite increasing insight into their function and heterogeneity, little is known regarding the origin of CAFs. Understanding the origin of CAF heterogeneity is needed to develop successful CAF-based targeted therapies. Through various transplantation studies in mice, we show that CAFs in both invasive lobular breast cancer and triple-negative breast cancer originate from mammary tissue-resident normal fibroblasts (NFs). Single-cell transcriptomics, in vivo and in vitro studies reveal the transition of CD26+ and CD26- NF populations into inflammatory CAFs (iCAFs) and myofibroblastic CAFs (myCAFs), respectively. Functional co-culture experiments show that CD26+ NFs transition into pro-tumorigenic iCAFs which recruit myeloid cells in a CXCL12-dependent manner and enhance tumor cell invasion via matrix-metalloproteinase (MMP) activity. Together, our data suggest that CD26+ and CD26- NFs transform into distinct CAF subpopulations in mouse models of breast cancer.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Dipeptidil Peptidase 4/genética , Fibroblastos , Fibroblastos Associados a Câncer/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Miofibroblastos/patologia , Microambiente Tumoral , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral
11.
Nat Commun ; 13(1): 6579, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323660

RESUMO

The limited efficacy of immune checkpoint inhibitor treatment in triple-negative breast cancer (TNBC) patients is attributed to sparse or unresponsive tumor-infiltrating lymphocytes, but the mechanisms that lead to a therapy resistant tumor immune microenvironment are incompletely known. Here we show a strong correlation between MYC expression and loss of immune signatures in human TNBC. In mouse models of TNBC proficient or deficient of breast cancer type 1 susceptibility gene (BRCA1), MYC overexpression dramatically decreases lymphocyte infiltration in tumors, along with immune signature remodelling. MYC-mediated suppression of inflammatory signalling induced by BRCA1/2 inactivation is confirmed in human TNBC cell lines. Moreover, MYC overexpression prevents the recruitment and activation of lymphocytes in both human and mouse TNBC co-culture models. Chromatin-immunoprecipitation-sequencing reveals that MYC, together with its co-repressor MIZ1, directly binds promoters of multiple interferon-signalling genes, resulting in their downregulation. MYC overexpression thus counters tumor growth inhibition by a Stimulator of Interferon Genes (STING) agonist via suppressing induction of interferon signalling. Together, our data reveal that MYC suppresses innate immunity and facilitates tumor immune escape, explaining the poor immunogenicity of MYC-overexpressing TNBCs.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Interferons , Linfócitos do Interstício Tumoral , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
12.
Cancer Res ; 81(24): 6171-6182, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34548335

RESUMO

The BRCA1 tumor suppressor gene encodes a multidomain protein for which several functions have been described. These include a key role in homologous recombination repair (HRR) of DNA double-strand breaks, which is shared with two other high-risk hereditary breast cancer suppressors, BRCA2 and PALB2. Although both BRCA1 and BRCA2 interact with PALB2, BRCA1 missense variants affecting its PALB2-interacting coiled-coil domain are considered variants of uncertain clinical significance (VUS). Using genetically engineered mice, we show here that a BRCA1 coiled-coil domain VUS, Brca1 p.L1363P, disrupts the interaction with PALB2 and leads to embryonic lethality. Brca1 p.L1363P led to a similar acceleration in the development of Trp53-deficient mammary tumors as Brca1 loss, but the tumors showed distinct histopathologic features, with more stable DNA copy number profiles in Brca1 p.L1363P tumors. Nevertheless, Brca1 p.L1363P mammary tumors were HRR incompetent and responsive to cisplatin and PARP inhibition. Overall, these results provide the first direct evidence that a BRCA1 missense variant outside of the RING and BRCT domains increases the risk of breast cancer. SIGNIFICANCE: These findings reveal the importance of a patient-derived BRCA1 coiled-coil domain sequence variant in embryonic development, mammary tumor suppression, and therapy response.See related commentary by Mishra et al., p. 6080.


Assuntos
Proteína BRCA1/fisiologia , Proteína do Grupo de Complementação N da Anemia de Fanconi/fisiologia , Regulação Neoplásica da Expressão Gênica , Recombinação Homóloga , Neoplasias Mamárias Animais/patologia , Reparo de DNA por Recombinação , Animais , Apoptose , Proteína BRCA2/fisiologia , Proliferação de Células , Feminino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/fisiologia
13.
Cancer Res ; 80(7): 1486-1497, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060147

RESUMO

Invasive lobular carcinoma (ILC) accounts for 8%-14% of all breast cancer cases. The main hallmark of ILCs is the functional loss of the cell-cell adhesion protein E-cadherin. Nonetheless, loss of E-cadherin alone does not predispose mice to mammary tumor development, indicating that additional perturbations are required for ILC formation. Previously, we identified an N-terminal truncation variant of ASPP2 (t-ASPP2) as a driver of ILC in mice with mammary-specific loss of E-cadherin. Here we showed that expression of t-ASPP2 induced actomyosin relaxation, enabling adhesion and survival of E-cadherin-deficient murine mammary epithelial cells on stiff matrices like fibrillar collagen. The induction of actomyosin relaxation by t-ASPP2 was dependent on its interaction with protein phosphatase 1, but not on t-ASPP2-induced YAP activation. Truncated ASPP2 collaborated with both E-cadherin loss and PI3K pathway activation via PTEN loss in ILC development. t-ASPP2-induced actomyosin relaxation was required for ILC initiation, but not progression. Conversely, YAP activation induced by t-ASPP2 contributed to tumor growth and progression while being dispensable for tumor initiation. Together, these findings highlight two distinct mechanisms through which t-ASPP2 promotes ILC initiation and progression. SIGNIFICANCE: Truncated ASPP2 cooperates with E-cadherin and PTEN loss to drive breast cancer initiation and progression via two distinct mechanisms. ASPP2-induced actomyosin relaxation drives tumor initiation, while ASPP2-mediated YAP activation enhances tumor progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/genética , Carcinoma Lobular/patologia , Proteínas de Ciclo Celular/metabolismo , Neoplasias Mamárias Experimentais/patologia , Proteínas Supressoras de Tumor/genética , Actomiosina/metabolismo , Animais , Caderinas/genética , Carcinogênese/patologia , Carcinoma Lobular/induzido quimicamente , Carcinoma Lobular/genética , Adesão Celular/genética , Células Cultivadas , Elementos de DNA Transponíveis/genética , Progressão da Doença , Células Epiteliais , Feminino , Imidazóis/toxicidade , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Transgênicos , Mutação , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Oxidiazóis/toxicidade , Cultura Primária de Células , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
14.
Nat Commun ; 10(1): 397, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674894

RESUMO

BRCA1-mutated breast cancer is primarily driven by DNA copy-number alterations (CNAs) containing large numbers of candidate driver genes. Validation of these candidates requires novel approaches for high-throughput in vivo perturbation of gene function. Here we develop genetically engineered mouse models (GEMMs) of BRCA1-deficient breast cancer that permit rapid introduction of putative drivers by either retargeting of GEMM-derived embryonic stem cells, lentivirus-mediated somatic overexpression or in situ CRISPR/Cas9-mediated gene disruption. We use these approaches to validate Myc, Met, Pten and Rb1 as bona fide drivers in BRCA1-associated mammary tumorigenesis. Iterative mouse modeling and comparative oncogenomics analysis show that MYC-overexpression strongly reshapes the CNA landscape of BRCA1-deficient mammary tumors and identify MCL1 as a collaborating driver in these tumors. Moreover, MCL1 inhibition potentiates the in vivo efficacy of PARP inhibition (PARPi), underscoring the therapeutic potential of this combination for treatment of BRCA1-mutated cancer patients with poor response to PARPi monotherapy.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Carcinogênese/genética , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Mutação , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Células-Tronco Embrionárias , Feminino , Redes Reguladoras de Genes , Células HEK293 , Humanos , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transcriptoma , Proteína Supressora de Tumor p53/genética
15.
Cancer Res ; 78(19): 5668-5679, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30115694

RESUMO

In human cancers, FGFR signaling is frequently hyperactivated by deregulation of FGF ligands or by activating mutations in the FGFR receptors such as gene amplifications, point mutations, and gene fusions. As such, FGFR inhibitors are considered an attractive therapeutic strategy for patients with mutations in FGFR family members. We previously identified Fgfr2 as a key driver of invasive lobular carcinoma (ILC) in an in vivo insertional mutagenesis screen using the Sleeping Beauty transposon system. Here we explore whether these FGFR-driven ILCs are sensitive to the FGFR inhibitor AZD4547 and use transposon mutagenesis in these tumors to identify potential mechanisms of resistance to therapy. Combined with RNA sequencing-based analyses of AZD4547-resistant tumors, our in vivo approach identified several known and novel potential resistance mechanisms to FGFR inhibition, most of which converged on reactivation of the canonical MAPK-ERK signaling cascade. Observed resistance mechanisms included mutations in the tyrosine kinase domain of FGFR2, overexpression of MET, inactivation of RASA1, and activation of the drug-efflux transporter ABCG2. ABCG2 and RASA1 were identified only from de novo transposon insertions acquired during AZD4547 treatment, demonstrating that insertional mutagenesis in mice is an effective tool for identifying potential mechanisms of resistance to targeted cancer therapies.Significance: These findings demonstrate that a combined approach of transcriptomics and insertional mutagenesis in vivo is an effective method for identifying potential targets to overcome resistance to therapy in the clinic. Cancer Res; 78(19); 5668-79. ©2018 AACR.


Assuntos
Benzamidas/química , Elementos de DNA Transponíveis , Resistencia a Medicamentos Antineoplásicos , Mutagênese , Piperazinas/química , Pirazóis/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Carcinoma Lobular/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Amplificação de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Análise de Sequência de RNA , Transcriptoma , Proteína p120 Ativadora de GTPase/metabolismo
16.
Nat Genet ; 49(8): 1219-1230, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650484

RESUMO

Invasive lobular carcinoma (ILC) is the second most common breast cancer subtype and accounts for 8-14% of all cases. Although the majority of human ILCs are characterized by the functional loss of E-cadherin (encoded by CDH1), inactivation of Cdh1 does not predispose mice to develop mammary tumors, implying that mutations in additional genes are required for ILC formation in mice. To identify these genes, we performed an insertional mutagenesis screen using the Sleeping Beauty transposon system in mice with mammary-specific inactivation of Cdh1. These mice developed multiple independent mammary tumors of which the majority resembled human ILC in terms of morphology and gene expression. Recurrent and mutually exclusive transposon insertions were identified in Myh9, Ppp1r12a, Ppp1r12b and Trp53bp2, whose products have been implicated in the regulation of the actin cytoskeleton. Notably, MYH9, PPP1R12B and TP53BP2 were also frequently aberrated in human ILC, highlighting these genes as drivers of a novel oncogenic pathway underlying ILC development.


Assuntos
Neoplasias da Mama/genética , Carcinoma Lobular/genética , Mutagênese Insercional , Animais , Caderinas/genética , Linhagem Celular , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Feminino , Haplótipos , Humanos , Masculino , Camundongos , Cadeias Pesadas de Miosina , Fosfatase de Miosina-de-Cadeia-Leve/genética , Miosina não Muscular Tipo IIA/genética , Transposases/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA