Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(1): e1008295, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971989

RESUMO

The HECT domain E3 ubiquitin ligase E6AP (UBE3A) is critical for the development of human papillomavirus (HPV) associated cancers, the neurodevelopment disorder Angelman Syndrome, and some cases of autism spectrum disorders. How E6AP recognizes its cellular targets and how its ubiquitin ligase activity is triggered remain poorly understood, and HPV E6 proteins are models for these processes. We examined diverse E6 proteins from human and non-human papillomaviruses and identified two different modes of interaction between E6 and E6AP. In Type I interactions, E6 can interact directly with the LXXLL peptide motif alone of E6AP (isolated from the rest of E6AP), and then recruit cellular substrates such as p53. In Type II interactions, E6 proteins require additional auxiliary regions of E6AP in either the amino terminus or in the carboxy-terminal HECT domain to interact with the LXXLL peptide motif of E6AP. A region of E6AP amino-terminal to the LXXLL peptide motif both augments association with E6 proteins and is required for E6 proteins to trigger ubiquitin ligase activity in the carboxy-terminal HECT ubiquitin ligase domain of E6AP. In Type I interactions, E6 can associate with E6AP and recruit p53, but a Type II interaction is required for the degradation of p53 or NHERF1. Interestingly, different E6 proteins varied in E6AP auxiliary regions that contributed to enhanced association, indicating evolutionary drift in the formation of Type II interactions. This classification of E6-E6AP interaction types and identification of a region in the E6AP amino terminus that is important for both E6 association and stimulation of ubiquitin ligase activity will inform future structural data of the E6-E6AP complex and future studies aiming to interfere with the activity of the E6-E6AP complex.


Assuntos
Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Infecções por Papillomavirus/enzimologia , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Humanos , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética
2.
PLoS Pathog ; 15(4): e1007575, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31002735

RESUMO

High-risk human papillomavirus (HPV) E6 proteins associate with the cellular ubiquitin ligase E6-Associated Protein (E6AP), and then recruit both p53 and certain cellular PDZ proteins for ubiquitination and degradation by the proteasome. Low-risk HPV E6 proteins also associate with E6AP, yet fail to recruit p53 or PDZ proteins; their E6AP-dependent targets have so far been uncharacterized. We found a cellular PDZ protein called Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) is targeted for degradation by both high and low-risk HPV E6 proteins as well as E6 proteins from diverse non-primate mammalian species. NHERF1 was degraded by E6 in a manner dependent upon E6AP ubiquitin ligase activity but independent of PDZ interactions. A novel structural domain of E6, independent of the p53 recognition domain, was necessary to associate with and degrade NHERF1, and the NHERF1 EB domain was required for E6-mediated degradation. Degradation of NHERF1 by E6 activated canonical Wnt/ß-catenin signaling, a key pathway that regulates cell growth and proliferation. Expression levels of NHERF1 increased with increasing cell confluency. This is the first study in which a cellular protein has been identified that is targeted for degradation by both high and low-risk HPV E6 as well as E6 proteins from diverse animal papillomaviruses. This suggests that NHERF1 plays a role in regulating squamous epithelial growth and further suggests that the interaction of E6 proteins with NHERF1 could be a common therapeutic target for multiple papillomavirus types.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Fosfoproteínas/genética , Filogenia , Complexo de Endopeptidases do Proteassoma , Proteólise , Proteínas Repressoras/genética , Trocadores de Sódio-Hidrogênio/genética , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia , Proteína Wnt1/genética , beta Catenina/genética
3.
J Virol ; 93(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30918081

RESUMO

Influenza virus is an RNA virus encapsulated in a lipid bilayer derived from the host cell plasma membrane. Previous studies showed that influenza virus infection depends on cellular lipids, including the sphingolipids sphingomyelin and sphingosine. Here we examined the role of a third sphingolipid, glucosylceramide, in influenza virus infection following clustered regularly interspaced short palindromic repeats with Cas9 (CRISPR-Cas9)-mediated knockout (KO) of its metabolizing enzyme glucosylceramidase (GBA). After confirming GBA knockout of HEK 293 and A549 cells by both Western blotting and lipid mass spectrometry, we observed diminished infection in both KO cell lines by a PR8 (H1N1) green fluorescent protein (GFP) reporter virus. We further showed that the reduction in infection correlated with impaired influenza virus trafficking to late endosomes and hence with fusion and entry. To examine whether GBA is required for other enveloped viruses, we compared the results seen with entry mediated by the glycoproteins of Ebola virus, influenza virus, vesicular stomatitis virus (VSV), and measles virus in GBA knockout cells. Entry inhibition was relatively robust for Ebola virus and influenza virus, modest for VSV, and mild for measles virus, suggesting a greater role for viruses that enter cells by fusing with late endosomes. As the virus studies suggested a general role for GBA along the endocytic pathway, we tested that hypothesis and found that trafficking of epidermal growth factor (EGF) to late endosomes and degradation of its receptor were impaired in GBA knockout cells. Collectively, our findings suggest that GBA is critically important for endocytic trafficking of viruses as well as of cellular cargos, including growth factor receptors. Modulation of glucosylceramide levels may therefore represent a novel accompaniment to strategies to antagonize "late-penetrating" viruses, including influenza virus.IMPORTANCE Influenza virus is the pathogen responsible for the second largest pandemic in human history. A better understanding of how influenza virus enters host cells may lead to the development of more-efficacious therapies against emerging strains of the virus. Here we show that the glycosphingolipid metabolizing enzyme glucosylceramidase is required for optimal influenza virus trafficking to late endosomes and for consequent fusion, entry, and infection. We also provide evidence that promotion of influenza virus entry by glucosylceramidase extends to other endosome-entering viruses and is due to a general requirement for this enzyme, and hence for optimal levels of glucosylceramide, for efficient trafficking of endogenous cargos, such as the epidermal growth factor (EGF) receptor, along the endocytic pathway. This work therefore has implications for the basic process of endocytosis as well as for pathogenic processes, including virus entry and Gaucher disease.


Assuntos
Endocitose/fisiologia , Glucosilceramidase/metabolismo , Orthomyxoviridae/metabolismo , Células A549 , Ebolavirus/metabolismo , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Glucosilceramidase/fisiologia , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A/fisiologia , Vírus do Sarampo/metabolismo , Internalização do Vírus
4.
PLoS Pathog ; 13(12): e1006781, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281732

RESUMO

Papillomavirus E6 proteins bind to LXXLL peptide motifs displayed on targeted cellular proteins. Alpha genus HPV E6 proteins associate with the cellular ubiquitin ligase E6AP (UBE3A), by binding to an LXXLL peptide (ELTLQELLGEE) displayed by E6AP, thereby stimulating E6AP ubiquitin ligase activity. Beta, Gamma, and Delta genera E6 proteins bind a similar LXXLL peptide (WMSDLDDLLGS) on the cellular transcriptional co-activator MAML1 and thereby repress Notch signaling. We expressed 45 different animal and human E6 proteins from diverse papillomavirus genera to ascertain the overall preference of E6 proteins for E6AP or MAML1. E6 proteins from all HPV genera except Alpha preferentially interacted with MAML1 over E6AP. Among animal papillomaviruses, E6 proteins from certain ungulate (SsPV1 from pigs) and cetacean (porpoises and dolphins) hosts functionally resembled Alpha genus HPV by binding and targeting the degradation of E6AP. Beta genus HPV E6 proteins functionally clustered with Delta, Pi, Tau, Gamma, Chi, Mu, Lambda, Iota, Dyokappa, Rho, and Dyolambda E6 proteins to bind and repress MAML1. None of the tested E6 proteins physically and functionally interacted with both MAML1 and E6AP, indicating an evolutionary split. Further, interaction of an E6 protein was insufficient to activate degradation of E6AP, indicating that E6 proteins that target E6AP co-evolved to separately acquire both binding and triggering of ubiquitin ligase activation. E6 proteins with similar biological function clustered together in phylogenetic trees and shared structural features. This suggests that the divergence of E6 proteins from either MAML1 or E6AP binding preference is a major event in papillomavirus evolution.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Evolução Molecular , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Especificidade da Espécie
5.
PLoS One ; 15(2): e0228735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32032363

RESUMO

Influenza virus is an enveloped virus wrapped in a lipid bilayer derived from the host cell plasma membrane. Infection by influenza virus is dependent on these host cell lipids, which include sphingolipids. Here we examined the role of the sphingolipid, glucosylceramide, in influenza virus infection by knocking out the enzyme responsible for its synthesis, glucosylceramide synthase (UGCG). We observed diminished influenza virus infection in HEK 293 and A549 UGCG knockout cells and demonstrated that this is attributed to impaired viral entry. We also observed that entry mediated by the glycoproteins of other enveloped viruses that enter cells by endocytosis is also impaired in UGCG knockout cells, suggesting a broader role for UGCG in viral entry by endocytosis.


Assuntos
Glucosiltransferases/genética , Vírus da Influenza A/fisiologia , Células A549 , Sistemas CRISPR-Cas/genética , Edição de Genes , Glucosiltransferases/deficiência , Células HEK293 , Humanos , Macrolídeos/farmacologia , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA