Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 27(12): 1335-44, 2013 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-23681811

RESUMO

RATIONALE: Carbon and chlorine compound-specific isotope analysis (CSIA) is utilized in chlorinated solvent contamination studies of soil and groundwater contaminated sites. However, in field studies, hydrogen CSIA has been used only in non-chlorinated volatile organic compound (VOC) investigations, due to low conversion yields into hydrogen gas and poor reproducibility. Therefore, it is important to develop hydrogen CSIA methodology for soil and subsurface contamination studies. METHODS: A new analytical method for determining compound-specific hydrogen stable isotope ratios is presented. The isotopic ratios were measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) coupled with a chromium reduction system. The method was used to determine the δ(2) H values of trichloroethene (TCE) and 1,2-cis-dichloroethene (cis-DCE). RESULTS: The accuracy of the method was verified by conducting comparison measurements of standards by the conventional offline technique and the new method. The precision of the new analytical method (better than ±7 ‰) is better than that obtained from the offline method. The quantification limits of the headspace-solid-phase microextraction (SPME) are 400 µg/L and 200 µg/L for TCE and cis-DCE, respectively. The quantification limits can be improved by adopting a more efficient pre-concentration system such as purge-and-trap or thermal adsorption. CONCLUSIONS: This analytical method will facilitate the use of hydrogen CSIA on chlorinated solvents, which can be beneficial in multi-isotope approaches (coupling δ(2)H values with δ(13)C and/or δ(37)Cl values) in field site investigations where source identifications and contaminant behaviours are questioned.

2.
J Contam Hydrol ; 60(3-4): 211-28, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12504360

RESUMO

Stable hydrogen isotopes of two chlorinated solvents, trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA), provided by five different manufacturers, were determined and compared to their carbon and chlorine isotopic signatures. The isotope ratio for delta2H of different TCEs ranged between +466.9 per thousand and +681.9 per thousand, for delta13C between -31.57 per thousand and -27.37 per thousand, and for delta37Cl between -3.19 per thousand and +3.90 per thousand. In the case of the TCAs, the isotope ratio for delta2H ranged between -23.1 per thousand and +15.1 per thousand, for delta13C between -27.39 per thousand and -25.84 per thousand, and for delta37Cl between -3.54 per thousand and +1.39 per thousand. As well, a column experiment was carried out to dechlorinate tetrachloroethylene (PCE) to TCE using iron. The dechlorination products have completely different hydrogen isotope ratios than the manufactured TCEs. Compared to the positive values of delta2H in manufactured TCEs (between +466.9 per thousand and +681.9 per thousand), the dechlorinated products had a very depleted delta2H (less than -300 per thousand). This finding has strong implications for distinguishing dechlorination products (PCE to TCE) from manufactured TCE. In addition, the results of this study show the potential of combining 2H/1H analyses with 13C/12C and 37Cl/35Cl for isotopic fingerprinting applications in organic contaminant hydrogeology.


Assuntos
Poluentes do Solo/análise , Solventes/química , Tricloroetanos/química , Tricloroetileno/química , Poluentes da Água/análise , Isótopos de Carbono/análise , Cloro/análise , Monitoramento Ambiental , Hidrogênio/análise , Isótopos , Solventes/análise , Tricloroetanos/análise , Tricloroetileno/análise
3.
Environ Int ; 59: 494-500, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23137556

RESUMO

Brominated flame retardants were determined in adipose tissues from 294 polar bears (Ursus maritimus) sampled in East Greenland in 23 of the 28years between 1983 and 2010. Significant linear increases were found for sum polybrominated diphenyl ether (ΣPBDE), BDE100, BDE153, and hexabromocyclododecane (HBCD). Average increases of 5.0% per year (range: 2.9-7.6%/year) were found for the subadult polar bears. BDE47 and BDE99 concentrations did not show a significant linear trend over time, but rather a significant non-linear trend peaking between 2000 and 2004. The average ΣPBDE concentrations increased 2.3 fold from 25.0ng/g lw (95% C.I.: 15.3-34.7ng/g lw) in 1983-1986 to 58.5ng/g lw (95% C.I.: 43.6-73.4ng/g lw) in 2006-2010. Similar but fewer statistically significant trends were found for adult females and adult males likely due to smaller sample size and years. Analyses of δ(15)N and δ(13)C stable isotopes in hair revealed no clear linear temporal trends in trophic level or carbon source, respectively, and non-linear trends differed among sex and age groups. These increasing concentrations of organobromine contaminants contribute to complex organohalogen mixture, already causing health effects to the East Greenland polar bears.


Assuntos
Tecido Adiposo/metabolismo , Poluentes Ambientais/metabolismo , Retardadores de Chama/metabolismo , Hidrocarbonetos Bromados/metabolismo , Ursidae/metabolismo , Tecido Adiposo/química , Animais , Monitoramento Ambiental , Poluentes Ambientais/análise , Feminino , Retardadores de Chama/análise , Groenlândia , História do Século XX , História do Século XXI , Hidrocarbonetos Bromados/análise , Masculino
4.
Anal Chem ; 77(13): 4027-33, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15987107

RESUMO

A new methodology for bromine stable isotope determination by continuous-flow isotope ratio mass spectrometry (CF-IRMS) was developed. The technique was tested on inorganic samples. Inorganic bromide was precipitated in the form of silver bromide by using silver nitrate in a standard methodology. Bromine stable isotope analysis was carried out on methyl bromide (CH3Br) after converting silver bromide to methyl bromide by reacting it with methyl iodide (CH3I). The system used in this study is an IsoPrime IRMS, with analytical capabilities of both dual-inlet and continuous-flow modes coupled with an Agilent 6890 GC equipped with a CTC Analytics CombiPAL autosampler. This new technique measures samples as small as 0.2 mg of AgBr (1 micromol of Br-). The bromine stable isotope analysis using continuous flow technology showed excellent precision and accuracy. The internal precision using pure methyl bromide gas is better than +/-0.03 per thousand (+/-SD); the external precision using seawater standard is better than +/-0.06 per thousand (+/-SD) for n = 12. Moreover, the sample analysis time is 16 min, as compared to 75 min needed in previous techniques. This allows for 50 samples to be analyzed in 1 day, as compared to 8 samples using the conventional techniques. A series of natural saline formation waters and brines from sedimentary and crystalline rock environments was measured by this new methodology to test the potential natural range of delta81Br. The bromine isotopic composition of the samples ranged from 0.00 to +1.80 per thousand relative to standard mean ocean bromide (SMOB). Initial trends and distinctive isotopic difference were noticed between crystalline shield brines and sedimentary formation brines.

5.
Rapid Commun Mass Spectrom ; 19(2): 121-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15593067

RESUMO

Chlorine stable isotope analyses of inorganic samples were conducted using continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with gas chromatography (GC). Inorganic chloride was precipitated in the form of silver chloride (AgCl) by using silver nitrate in a standard methodology. Chlorine stable isotope analysis was carried out on methyl chloride (CH3Cl) after converting AgCl into CH3Cl by reacting it with methyl iodide (CH3I). The reaction between AgCl and CH3I took place in 20 mL size vials. Addition of CH3I was performed in a glove bag under helium flow. An Agilent 6890 gas chromatograph equipped with a CTC Analytics CombiPAL autosampler and a DB-5MS 60 m column was used to separate CH3Cl from CH3I. This new technique uses samples as small as 0.2 mg of AgCl (1.4 micromol of Cl-). The chlorine stable isotope analysis using continuous flow technology showed excellent precision and accuracy. The internal precision using pure CH3Cl gas is better than +/-0.04 per thousand (+/-STDV). The external precision using seawater standard is better than +/-0.07 per thousand (+/-STDV) for n=12. Moreover, the sample analysis time is much shorter and many more samples can be analyzed in one day than by using the conventional off-line techniques.


Assuntos
Cloro/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Inorgânicos/análise , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Marcação por Isótopo , Isótopos/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA