Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Econ Entomol ; 107(4): 1362-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25195423

RESUMO

Studies were conducted in 2013-2014 to quantify attraction, feeding, and mortality of male oriental fruit flies, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), to STATIC Spinosad ME a reduced-risk male annihilation treatment (MAT) formulation consisting of an amorphous polymer matrix in combination with methyl eugenol (ME) and spinosad compared with the standard treatment of Min-U-Gel mixed with ME and naled (Dibrom). Our approach used a behavioral methodology for evaluation of slow-acting reduced-risk insecticides. ME treatments were weathered for 1, 7, 14, 21, and 28 d under operational conditions in California and Florida and shipped to Hawaii for bioassays. In field tests using bucket traps to attract and capture wild males, and in toxicity studies conducted in 1-m(3) cages using released males of controlled ages, STATIC Spinosad ME performed equally as well to the standard formulation of Min-U-Gel ME with naled for material aged up to 28 d in both California and Florida. In laboratory feeding tests in which individual males were exposed for 5 min to the different ME treatments, mortality induced by STATIC Spinosad ME recorded at 24 h did not differ from mortality caused by Min-U-Gel ME with naled at 1, 7, 14, and 21 d in California and was equal to or higher for all weathered time periods in Florida during two trials. Spinosad has low contact toxicity, and when mixed with an attractant and slow release matrix, offers a reduced-risk alternative for eradication of B. dorsalis and related ME attracted species, without many of the potential negative effects to humans and nontargets associated with broad-spectrum contact insecticides such as naled.


Assuntos
Inseticidas/administração & dosagem , Macrolídeos/administração & dosagem , Feromônios , Tephritidae , Animais , California , Combinação de Medicamentos , Florida , Masculino
2.
J Agric Food Chem ; 55(18): 7517-26, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17696361

RESUMO

An extended lipophilic system that incorporated some key elements of first-generation 2,6-dihaloaryl actives, such as 1, demonstrated desirable efficacy against chewing insects as well as sap-feeding insects. These four-ring systems, based on 2, were accessed primarily via Suzuki couplings of halothiophene derivatives with appropriately substituted boronic acids. In particular, phenylthiophene systems that incorporated haloxyether groups, such as those in 3, 4, and 5, had the broadest spectrum of activity across chewing and sap-feeding insect pests. Expansion of this structure-activity relationship to include compounds with differing substitution patterns on the thiophene-C-ring and aryl-D-rings was undertaken. The synthesis and insecticidal activity of 3-aryl-5-(thiophen-2-yl)-1-methyl-1H-[1,2,4]triazoles will be described.


Assuntos
Inseticidas/química , Tiofenos/química , Triazóis/química , Ácaros e Carrapatos , Animais , Inseticidas/síntese química , Relação Estrutura-Atividade
3.
J Econ Entomol ; 97(2): 593-600, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15154487

RESUMO

A benzoylphenylurea insect growth regulator with the common name noviflumuron was evaluated for use as a baiting toxicant against the eastern subterranean termite, Reticulitermes flavipes (Kollar). Noviflumuron demonstrated significantly greater potency and faster speed of action compared with the commercial standard hexaflumuron. In addition, noviflumuron was not a feeding deterrent on filter paper at concentrations of up to 10,000 ppm. The rates of uptake, clearance, and insect-to-insect transfer of [14C] noviflumuron were measured in R. flavipes in laboratory assays and compared with those previously reported for [14C]hexaflumuron. Under a continuous exposure regime, the uptake profile for noviflumuron was similar to that for hexaflumuron, although the time period of maximal uptake was shorter for noviflumuron. Noviflumuron was cleared from termites in a first order process with a half-life of approximately 29 d, whereas the half-life of hexaflumuron was much shorter (8-9 d). Noviflumuron was efficiently transferred from treated to untreated termites by trophallaxis via kinetics similar to those reported for hexaflumuron; however, the systemic dose of noviflumuron required to result in toxicity of R. flavipes was found to be at least two- to three-fold less than that of hexaflumuron. The faster activity of noviflumuron compared with hexaflumuron in R. flavipes can be at least partially explained by the combination of slower clearance and greater intrinsic activity.


Assuntos
Benzamidas/farmacocinética , Hidrocarbonetos Fluorados/farmacocinética , Inseticidas/farmacocinética , Isópteros/metabolismo , Animais , Radioisótopos de Carbono , Meia-Vida , Compostos de Fenilureia
4.
J Comput Aided Mol Des ; 22(6-7): 393-401, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18344004

RESUMO

Improvements in the efficacy and spectrum of the spinosyns, novel fermentation derived insecticide, has long been a goal within Dow AgroSciences. As large and complex fermentation products identifying specific modifications to the spinosyns likely to result in improved activity was a difficult process, since most modifications decreased the activity. A variety of approaches were investigated to identify new synthetic directions for the spinosyn chemistry including several explorations of the quantitative structure activity relationships (QSAR) of spinosyns, which initially were unsuccessful. However, application of artificial neural networks (ANN) to the spinosyn QSAR problem identified new directions for improved activity in the chemistry, which subsequent synthesis and testing confirmed. The ANN-based analogs coupled with other information on substitution effects resulting from spinosyn structure activity relationships lead to the discovery of spinetoram (XDE-175). Launched in late 2007, spinetoram provides both improved efficacy and an expanded spectrum while maintaining the exceptional environmental and toxicological profile already established for the spinosyn chemistry.


Assuntos
Inseticidas/química , Inseticidas/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Redes Neurais de Computação , Animais , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA