Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(13): 5541-5551, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34189614

RESUMO

Rare actinomycetes are likely treasure troves for bioactive natural products, and it is therefore important that we enrich our understanding of biosynthetic potential of these relatively understudied bacteria. Dactylosporangium are a genus of such rare Actinobacteria that are known to produce a number of important antibacterial compounds, but for which there are still no fully assembled reference genomes, and where the extent of encoded biosynthetic capacity is not defined. Dactylosporangium vinaceum (NRRL B-16297) is known to readily produce a deep wine red-coloured diffusible pigment of unknown origin, and it was decided to define the chemical identity of this natural product pigment, and in parallel use whole genome sequencing and transcriptional analysis to lay a foundation for understanding the biosynthetic capacity of these bacteria. Results show that the produced pigment is made of various rubrolone conjugates, the spontaneous product of the reactive pre-rubrolone, produced by the bacterium. Genome and transcriptome analysis identified the highly expressed biosynthetic gene cluster (BGC) for pre-rubrolone. Further analysis of the fully assembled genome found it to carry 24 additional BGCs, of which the majority were poorly transcribed, confirming the encoded capacity of this bacterium to produce natural products but also illustrating the main bottleneck to exploiting this capacity. Finally, analysis of the potential environmental role of pre-rubrolone found it to react with a number of amine containing antibiotics, antimicrobial peptides and siderophores pointing to its potential role as a "minesweeper" of xenobiotic molecules in the bacterial environment. KEY POINTS: • D. vinaceum encodes many BGC, but the majority are transcriptionally silent. • Chemical screening identifies molecules that modulate rubrolone production. • Pre-rubrolone is efficient at binding and inactivating many natural antibiotics.


Assuntos
Actinobacteria , Produtos Biológicos , Micromonosporaceae , Actinobacteria/genética , Família Multigênica , Piridinas
2.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806630

RESUMO

While thiol-based catalysts are widely employed for chemical protein synthesis relying on peptide thioester chemistry, this is less true for selenol-based catalysts whose development is in its infancy. In this study, we compared different selenols derived from the selenocysteamine scaffold for their capacity to promote thiol-thioester exchanges in water at mildly acidic pH and the production of peptide thioesters from bis(2-sulfanylethyl)amido (SEA) peptides. The usefulness of a selected selenol compound is illustrated by the total synthesis of a biologically active human chemotactic protein, which plays an important role in innate and adaptive immunity.


Assuntos
Fatores Quimiotáticos/metabolismo , Quimiotaxia , Ésteres/síntese química , Compostos Organosselênicos/química , Fragmentos de Peptídeos/química , Biossíntese de Proteínas , Compostos de Sulfidrila/química , Catálise , Técnicas de Química Sintética , Humanos , Monócitos/citologia , Monócitos/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-31405863

RESUMO

The escalating burden of antibiotic drug resistance necessitates research into novel classes of antibiotics and their mechanism of action. Pyrrolomycins are a family of potent natural product antibiotics with nanomolar activity against Gram-positive bacteria, yet with an elusive mechanism of action. In this work, we dissect the apparent Gram-positive specific activity of pyrrolomycins and show that Gram-negative bacteria are equally sensitive to pyrrolomycins when drug efflux transporters are removed and that albumin in medium plays a large role in pyrrolomycin activity. The selection of resistant mutants allowed for the characterization and validation of a number of mechanisms of resistance to pyrrolomycins in both Staphylococcus aureus and an Escherichia coli ΔtolC mutant, all of which appear to affect compound penetration rather than being target associated. Imaging of the impact of pyrrolomycin on the E. coli ΔtolC mutant using scanning electron microscopy showed blebbing of the bacterial cell wall often at the site of bacterial division. Using potentiometric probes and an electrophysiological technique with an artificial bilayer lipid membrane, it was demonstrated that pyrrolomycins C and D are very potent membrane-depolarizing agents, an order of magnitude more active than conventional carbonyl cyanide m-chlorophenylhydrazone (CCCP), specifically disturbing the proton gradient and uncoupling oxidative phosphorylation via protonophoric action. This work clearly unveils the until-now-elusive mechanism of action of pyrrolomycins and explains their antibiotic activity as well as mechanisms of innate and acquired drug resistance in bacteria.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Pirróis/química , Pirróis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Staphylococcus aureus/ultraestrutura , Relação Estrutura-Atividade
4.
Gastroenterology ; 154(1): 211-223.e8, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28958858

RESUMO

BACKGROUND & AIMS: Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. Approximately 2 billion people live in areas endemic for HEV and are at risk of infection. The HEV genome encodes 3 proteins, including the ORF2 capsid protein. Detailed analyses of the HEV life cycle has been hampered by the lack of an efficient viral culture system. METHODS: We performed studies with gt3 HEV cell culture-produced particles and patient blood and stool samples. Samples were fractionated on iodixanol gradients and cushions. Infectivity assays were performed in vitro and in human liver chimeric mice. Proteins were analyzed by biochemical and proteomic approaches. Infectious particles were analyzed by transmission electron microscopy. HEV antigen levels were measured with the Wantaï enzyme-linked immunosorbent assay. RESULTS: We developed an efficient cell culture system and isolated HEV particles that were infectious in vitro and in vivo. Using transmission electron microscopy, we defined the ultrastructure of HEV cell culture-produced particles and particles from patient sera and stool samples. We also identified the precise sequence of the infectious particle-associated ORF2 capsid protein. In cultured cells and in samples from patients, HEV produced 3 forms of the ORF2 capsid protein: infectious/intracellular ORF2 (ORF2i), glycosylated ORF2 (ORF2g), and cleaved ORF2 (ORF2c). The ORF2i protein associated with infectious particles, whereas the ORF2g and ORF2c proteins were massively secreted glycoproteins not associated with infectious particles. ORF2g and ORF2c were the most abundant antigens detected in sera from patients. CONCLUSIONS: We developed a cell culture system and characterized HEV particles; we identified 3 ORF2 capsid proteins (ORF2i, ORF2g, and ORFc). These findings will advance our understanding of the HEV life cycle and improve diagnosis.


Assuntos
Proteínas do Capsídeo/isolamento & purificação , Vírus da Hepatite E/fisiologia , Hepatite E/metabolismo , Proteínas Virais/isolamento & purificação , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Hepatite E/etiologia , Hepatite E/patologia , Hepatócitos , Humanos , Camundongos
5.
Bioconjug Chem ; 30(11): 2967-2973, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31702897

RESUMO

One hallmark of protein chemical synthesis is its capacity to access proteins that living systems can hardly produce. This is typically the case for proteins harboring post-translational modifications such as ubiquitin or ubiquitin-like modifiers. Various methods have been developed for accessing polyubiquitin conjugates by semi- or total synthesis. Comparatively, the preparation of small-ubiquitin-like modifier (SUMO) conjugates, and more particularly of polySUMO scaffolds, is much less developed. We describe hereinafter a synthetic strategy for accessing all SUMO-2/3 dimer combinations.


Assuntos
Fragmentos de Peptídeos/química , Polímeros/química , Poliubiquitina/metabolismo , Multimerização Proteica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/síntese química , Ubiquitinas/síntese química , Sequência de Aminoácidos , Humanos , Conformação Proteica , Processamento de Proteína Pós-Traducional , Homologia de Sequência , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitinas/metabolismo
6.
Bioconjug Chem ; 30(10): 2684-2696, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31532181

RESUMO

While the semi or total synthesis of ubiquitin or polyubiquitin conjugates has attracted a lot of attention the past decade, the preparation of small ubiquitin-like modifier (SUMO) conjugates is much less developed. We describe hereinafter some important molecular features to consider when preparing SUMO-2/3 conjugates by chemical synthesis using the native chemical ligation and extended methods. In particular, we clarify the role of the conserved cysteine residue on SUMO-2/3 domain stability and properties. Our data reveal that SUMO-2 and -3 proteins behave differently from the Cys → Ala modification with SUMO-2 being less impacted than SUMO-3, likely due to a stabilizing interaction occurring in SUMO-2 between its tail and the SUMO core domain. While the Cys → Ala modification has no effect on the enzyme-catalyzed conjugation, it shows a deleterious effect on the enzyme-catalyzed deconjugation process, especially with the SUMO-3 conjugate. Whereas it is often stated that SUMO-2 and SUMO-3 are structurally and functionally indistinguishable, here we show that these proteins have specific structural and biochemical properties. This information is important to consider when designing and preparing SUMO-2/3 conjugates, and should help in making progress in the understanding of the specific role of SUMO-2 and/or SUMO-3 modifications on protein structure and function.


Assuntos
Sequência Conservada , Cisteína , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/síntese química , Sequência de Aminoácidos , Modelos Moleculares , Domínios Proteicos
7.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 66-74, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30048019

RESUMO

RATIONALE: Many important biological processes rely on specific biomarkers (such as metabolites, drugs, proteins or peptides, carbohydrates, lipids, ...) that need to be monitored in various fluids (blood, plasma, urine, cell cultures, tissue homogenates, …). Although mass spectrometry (MS) hyphenated to liquid chromatography (LC) is widely accepted as a 'gold-standard' method for identifying such synthetic chemicals or biological products, their robust fast sensitive detection from complex matrices still constitutes a highly challenging matter. METHODS: In order to circumvent the constraints intrinsic to LC/MS technology in terms of prior sample treatment, analysis time and overall method development to optimize ionization efficiency affecting the detection threshold, we investigated laser desorption/ionization mass spectrometry (LDI-MS) by directly depositing the sample under study onto cheap inert nanostructures made of silicon to perform straightforward sensitive and rapid screening of targeted low mass biomarkers on a conventional MALDI platform. RESULTS: The investigated silicon nanostructures were found to act as very efficient ion-promoting surfaces exhibiting high performance for the detection of different classes of organic compounds, including glutathione, glucose, peptides and antibiotics. Achieving such broad detection was compulsory to develop a SALDI-MS-based pre-screening tool. CONCLUSIONS: The key contribution of the described analytical strategy consists of designing inert surfaces that are fast (minute preparation) and cheap to produce, easy to handle and able to detect small organic compounds in matrix-free LDI-MS prerequisite for biomarkers pre-screening from body fluids without the recourse of any separation step.


Assuntos
Nanoestruturas/química , Silício/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antibacterianos/análise , Biomarcadores/análise , Glutationa/análise , Modelos Biológicos , Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
8.
PLoS Pathog ; 12(3): e1005476, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26939061

RESUMO

The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV), a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.


Assuntos
Vírus da Diarreia Viral Bovina/ultraestrutura , Proteínas do Envelope Viral/ultraestrutura , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/ultraestrutura , Bovinos , Linhagem Celular , Microscopia Crioeletrônica , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/imunologia , Vírus da Diarreia Viral Bovina/isolamento & purificação , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteínas do Envelope Viral/genética , Vírion
9.
J Org Chem ; 83(20): 12584-12594, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30230829

RESUMO

N-Alkyl bis(2-selanylethyl)amines catalyze the synthesis of peptide thioesters or peptide ligation from bis(2-sulfanylethyl)amido (SEA) peptides. These catalysts are generated in situ by reduction of the corresponding cyclic diselenides by tris(2-carboxyethyl)phosphine. They are particularly efficient at pH 4.0 by accelerating the thiol-thioester exchange processes, which are otherwise rate-limiting at this pH. By promoting SEA-mediated reactions at mildly acidic pH, they facilitate the synthesis of complex peptides such as cyclic O-acyl isopeptides that are otherwise hardly accessible.


Assuntos
Ésteres/síntese química , Compostos Organosselênicos/química , Peptídeos/síntese química , Compostos de Sulfidrila/química , Catálise , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Fosfinas/química , Solubilidade , Relação Estrutura-Atividade , Água
10.
Analyst ; 142(6): 969-978, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28239690

RESUMO

In this paper, we report an original method to immobilize a model peptide on silicon nanowires (SiNWs) via a photolinker attached to the SiNWs' surface. The silicon nanowires were fabricated by a metal assisted chemical etching (MACE) method. Then, direct characterization of the peptide immobilization on SiNWs was performed either by X-ray photoelectron spectroscopy (XPS) or by laser-desorption/ionization mass spectrometry (LDI-MS). XPS allowed us to follow the peptide immobilization and its photorelease by recording the variation of the signal intensities of the different elements present on the SiNW surface. Mass spectrometry was performed without the use of an organic matrix and peptide ions were produced via a photocleavage mechanism. Indeed, thanks to direct photorelease achieved upon laser irradiation, a recorded predictable peak related to the molecular peptide ion has been detected, allowing the identification of the model peptide. Additional MS/MS experiments confirmed the photodissociation site and confirmed the N-terminal immobilization of the peptide on SiNWs.

11.
Bioconjug Chem ; 27(6): 1540-6, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27195426

RESUMO

SUMOylation constitutes a major post-translational modification (PTM) used by the eukaryote cellular machinery to modulate protein interactions of the targeted proteins. The small ubiquitin-like modifier-1 (SUMO-1) features a central and conserved cysteine residue (Cys52) that is located in the hydrophobic core of the protein and in tight contact with Phe65, suggesting the occurrence of an S/π interaction. To investigate the importance of Cys52 on SUMO-1 thermal stability and biochemical properties, we produced by total chemical synthesis SUMO-1 or SUMO-1 Cys52Ala peptide-protein conjugates featuring a native isopeptidic bond between SUMO-1 and a peptide derived from p53 tumor suppressor protein. The Cys52Ala modification perturbed SUMO-1 secondary structure and resulted in a dramatic loss of protein thermal stability. Moreover, the cleavage of the isopeptidic bond by the deconjugating enzyme Upl1 was significantly less efficient than for the wild-type conjugate. Similarly, the in vitro SUMOylation of RanGap1 by E1/E2 conjugating enzymes was significantly less efficient with the SUMO-1 C52A analog compared to wild-type SUMO-1. These data demonstrate the critical role of Cys52 in maintaining SUMO-1 conformation and function and the importance of keeping this cysteine intact for the study of SUMO-1 protein conjugates.


Assuntos
Cisteína , Fragmentos de Peptídeos/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Temperatura , Sequência de Aminoácidos , Sequência Conservada , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Domínios Proteicos , Estabilidade Proteica , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
12.
Bioconjug Chem ; 25(5): 1000-10, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24749766

RESUMO

The capacity of many proteins to interact with natural or synthetic polyanions has been exploited for modulating their biological action. However, the polydispersity of these macromolecular polyanions as well as their poor specificity is a severe limitation to their use as drugs. An emerging trend in this field is the synthesis of homogeneous and well-defined polyanion-peptide conjugates, which act as bivalent ligands, with the peptide part bringing the selectivity of the scaffold. Alternately, this strategy can be used for improving the binding of short peptides to polyanion-binding protein targets. This work describes the design and first synthesis of homogeneous polysulfonate-peptide conjugates using thiocarbamate ligation for binding to the extracellular domain of MET tyrosine kinase receptor for hepatocyte growth factor.


Assuntos
Dendrímeros/química , Peptídeos/química , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Ácidos Sulfônicos/química , Tiocarbamatos/química , Dendrímeros/síntese química , Relação Dose-Resposta a Droga , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Estrutura Molecular , Peptídeos/síntese química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-met/química , Relação Estrutura-Atividade , Especificidade por Substrato
13.
Proteome Sci ; 12: 24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24944524

RESUMO

BACKGROUND: Lipid lowering agent such as agonists of peroxisome proliferator-activated receptors (PPAR) are suggested as neuroprotective agents and may protect from the sequelae of brain ischemic stroke. Although the demonstration is not clearly established in human, the underlying molecular mechanism may be of interest for future therapeutic purposes. To this end, we have used our well established rodent model of ischemia-reperfusion pre-treated or not with fenofibrate or atorvastatin and performed a differential proteomics analyses of the brain and analysed the protein markers which levels returned to "normal" following pre-treatments with PPARα agonists. RESULTS: In order to identify potential therapeutic targets positively modulated by pre-treatment with the PPARα agonists, two-dimensional gel electrophoresis proteome profiles between control, ischemia-reperfusion and pre-treated or not, were compared. The polypeptide which expression was altered following ischemia - reperfusion but whose levels remain unchanged after pre-treatment were characterized by mass spectrometry and further investigated by Western-blotting and immunohistochemistry. A series of 28 polypeptides were characterized among which the protein disulfide isomerase reduction - a protein instrumental to the unfolded protein response system - was shown to be reduced following PPARα agonists treatment while it was strongly increased in ischemia-reperfusion. CONCLUSIONS: Pre-treatment with PPARα agonist or atorvastatin show potential neuroprotective effects by inhibiting the PDI overexpression in conjunction with the preservation of other neuronal markers, several of which are associated with the regulation of protein homeostasis, signal transduction and maintenance of synaptic plasticity. This proteomic study therefore suggests that neuroprotective effect of PPARα agonists supposes the preservation of the expression of several proteins essential for the maintenance of protein homeostasis not necessarily directly linked to PPARα known-regulated targets.

14.
Analyst ; 139(20): 5155-63, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25112364

RESUMO

We present in this work a simple and fast preparation method of a new affinity surface-assisted laser/desorption ionization mass spectrometry (SALDI-MS) substrate based on silicon nanostructures decorated with copper particles. The silicon nanostructures were fabricated by the metal-assisted chemical etching (MACE) method. Then, superhydrophilic areas surrounded by superhydrophobic regions were formed through hydrosilylation reaction of 1-octadecene, followed by local degradation of the octadecyl layer. After that, copper particles were deposited in the hydrophilic areas by using the electroless method. We have demonstrated that these surfaces were able to perform high selective capture of model His-tag peptide even in a complex mixture such as serum solution. Then, the captured peptide was detected by mass spectrometry at a femtomolar level without the need of organic matrix.


Assuntos
Técnicas de Química Analítica/métodos , Cobre/química , Nanoestruturas/química , Peptídeos/análise , Silício/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Alcenos/química , Histidina/química , Oligopeptídeos/química
15.
J Pept Sci ; 20(2): 92-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24254655

RESUMO

Protein total chemical synthesis enables the atom-by-atom control of the protein structure and therefore has a great potential for studying protein function. Native chemical ligation of C-terminal peptide thioesters with N-terminal cysteinyl peptides and related methodologies are central to the field of protein total synthesis. Consequently, methods enabling the facile synthesis of peptide thioesters using Fmoc-SPPS are of great value. Herein, we provide a detailed protocol for the preparation of bis(2-sulfanylethyl)amino polystyrene resin as a starting point for the synthesis of C-terminal bis(2-sulfanylethyl)amido peptides and of peptide thioesters derived from 3-mercaptopropionic acid.


Assuntos
Ésteres/síntese química , Peptídeos/síntese química , Poliestirenos/síntese química , Resinas Sintéticas/síntese química , Técnicas de Química Sintética , Peptídeos/química , Poliestirenos/química , Resinas Sintéticas/química , Sulfonamidas/química
16.
Anaerobe ; 28: 18-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24785350

RESUMO

Bacteroides thetaiotaomicron maybe one of the most adaptable intestinal bacteria due to its complex genome. Known to be an opportunistic pathogenic anaerobe, B. thetaiotaomicron has recently been described as a symbiont with anti-inflammatory properties. In this study, peptide mass finger printing technique was used to identify the stress proteins (maybe anti-stress proteins for the host) extracted from B. thetaiotaomicron grown under nutrient starvation (without heme, blood or bile) prior to be placed in an aerobic solution containing a mild non-ionic detergent derived from cholic acid. We focus here on proteins related to stress, knowing that superoxide dismutase was previously identified in the extract. In parallel, the morphology of the bacterial cells was observed using electronic microscopy before and after the extraction process. The effective antioxidant effect of the extract was evaluated in vitro against hydrogen peroxide. This work highlights the B. thetaiotaomicron ability to produce a large amount of stress proteins and to remain viable during the extraction. Budding vesicles were observed on its cell wall. The extraction process did not exceed 20 h in order to preserve the bacterial viability that decreased significantly after 24 h in preliminary studies. In our experimental conditions, an inhibitory effect of the extract was found against hydrogen peroxide. Animal models of inflammation will later check in vivo if this extract of anti-stress proteins is able to counter the respiratory burst beginning an inflammation process.


Assuntos
Proteínas de Bactérias/análise , Bacteroides/química , Bacteroides/fisiologia , Proteínas de Choque Térmico/análise , Estresse Fisiológico , Antioxidantes/análise , Bacteroides/ultraestrutura , Exossomos , Peróxido de Hidrogênio/toxicidade , Viabilidade Microbiana , Microscopia Eletrônica , Mapeamento de Peptídeos
17.
Proteomics ; 13(7): 1065-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23386401

RESUMO

In this study, we developed a novel computational approach based on protein-protein interaction networks to identify a list of proteins that might have remained undetected in differential proteomic profiling experiments. We tested our computational approach on two sets of human smooth muscle cell protein extracts that were affected differently by DNase I treatment. Differential proteomic analysis by saturation DIGE resulted in the identification of 41 human proteins. The application of our approach to these 41 input proteins consisted of four steps: (i) Compilation of a human protein-protein interaction network from public databases; (ii) calculation of interaction scores based on functional similarity; (iii) determination of a set of candidate proteins that are needed to efficiently and confidently connect the 41 input proteins; and (iv) ranking of the resulting 25 candidate proteins. Two of the three highest-ranked proteins, beta-arrestin 1, and beta-arrestin 2, were experimentally tested, revealing that their abundance levels in human smooth muscle cell samples were indeed affected by DNase I treatment. These proteins had not been detected during the experimental proteomic analysis. Our study suggests that our computational approach may represent a simple, universal, and cost-effective means to identify additional proteins that remain elusive for current 2D gel-based proteomic profiling techniques.


Assuntos
Proteínas Musculares/metabolismo , Mapas de Interação de Proteínas , Proteômica/métodos , Extratos Celulares , Células Cultivadas , Bases de Dados de Proteínas , Eletroforese em Gel Bidimensional , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Reprodutibilidade dos Testes , Software
18.
Bioorg Med Chem ; 21(12): 3486-94, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23523386

RESUMO

Hepatocyte growth factor/scatter factor (HGF/SF) is the high affinity ligand of MET tyrosine kinase receptor. We report here the total synthesis of a biotinylated analogue of human HGF/SF N domain. Functionally, N domain is part of the HGF/SF high affinity binding site for MET and also the main HGF/SF binding site for heparin. The 97 Aa linear chain featuring a C-terminal biotin group was assembled in high yield using an N-to-C one-pot three segments assembly strategy relying on a sequential Native Chemical Ligation (NCL)/bis(2-sulfanylethyl)amido (SEA) native peptide ligation process. The folded protein displayed the native disulfide bond pattern and showed the ability to bind heparin.


Assuntos
Biotina/química , Fator de Crescimento de Hepatócito/síntese química , Biotinilação , Fator de Crescimento de Hepatócito/química , Humanos , Modelos Moleculares , Estrutura Molecular
19.
ACS Cent Sci ; 9(11): 2138-2149, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38033789

RESUMO

Inspired by natural sideromycins, the conjugation of antibiotics to siderophores is an attractive strategy to facilitate "Trojan horse" delivery of antibiotics into bacteria. Genome analysis of a soil bacterium, Dactylosporangium fulvum, found a "hybrid" biosynthetic gene cluster responsible for the production of both an antibiotic, pyridomycin, and a novel chlorocatechol-containing siderophore named chlorodactyloferrin. While both of these natural products were synthesized independently, analysis of the culture supernatant also identified a conjugate of both molecules. We then found that the addition of ferric iron to purified chlorodactyloferrin and pyridomycin instigated their conjugation, leading to the formation of a covalent bond between the siderophore-catechol and the pyridomycin-pyridine groups. Using model reactants, this iron-based reaction was found to proceed through a Michael-type addition reaction, where ferric iron oxidizes the siderophore-catechol group into its quinone form, which is then attacked by the antibiotic pyridyl-nitrogen to form the catechol-pyridinium linkage. These findings prompted us to explore if other "cargo" molecules could be attached to chlorodactyloferrin in a similar manner, and this was indeed confirmed with a pyridine-substituted TAMRA fluorophore as well as with pyridine-substituted penicillin, rifampicin, and norfloxacin antibiotic analogues. The resultant biomimetic conjugates were demonstrated to effectively enter a number of bacteria, with TAMRA-chlorodactyloferrin conjugates causing fluorescent labeling of the bacteria, and with penicillin and rifampicin conjugates eliciting antibiotic activity. These findings open up new opportunities for the design and facile synthesis of a novel class of biomimetic siderophore conjugates with antibiotic activity.

20.
Mol Microbiol ; 80(6): 1625-36, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21518392

RESUMO

The chaperone/protease DegP belongs to the HtrA superfamily and is involved in protein quality control in the periplasm of Gram-negative bacteria. In Escherichia coli, typical substrates are unfolded or misfolded globular proteins that trigger the rearrangement of inactive DegP hexamers into substrate-sequestering 12- or 24-mers 'cages' for refolding or degradation. In Bordetella pertussis, DegP(Bp) facilitates, in addition, the secretion of FHA, a long ß-helical adhesin that passes through the periplasm in an extended conformation. We show that DegP(Bp) exists as soluble trimers and as a membrane-associated form. Different substrates interact differently with the distinct forms of DegP(Bp), and membrane-associated DegP(Bp) has high affinity for non-native FHA. Unlike more globular substrates, FHA does not efficiently mediate rearrangement of trimers into proteolytically active, short-lived dodecamers. In contrast to these dodecamers, membrane-associated DegP(Bp) is not committed to substrate degradation, although it is proteolytically competent. In B. pertussis, membrane-associated DegP(Bp) thus represents a specific functional form serving as a holding chaperone for client proteins including FHA. If FHA secretion is impaired, membrane-associated DegP(Bp) participates in its degradation. This form of DegP(Bp) is appropriate to handle substrates unsuitable to be sequestered in cages or non-folded, secretory proteins that must not be degraded.


Assuntos
Bordetella pertussis/enzimologia , Membrana Celular/enzimologia , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/metabolismo , Bordetella pertussis/química , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Estrutura Terciária de Proteína , Transporte Proteico , Serina Endopeptidases/química , Serina Endopeptidases/genética , Especificidade por Substrato , Fatores de Virulência de Bordetella/química , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA