Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 28(3): 1454-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24297698

RESUMO

Hepatitis B virus (HBV) genome transcription is highly dependent on liver-enriched, metabolic nuclear receptors (NRs). Among others, NR farnesoid X receptor α (FXRα) enhances HBV core promoter activity and pregenomic RNA synthesis. Interestingly, two food-withdrawal-induced FXRα modulators, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and deacetylase SIRT1, have been found to be associated with HBV genomes ex vivo. Whereas PGC-1α induction was shown to increase HBV replication, the effect of SIRT1 on HBV transcription remains unknown. Here, we showed that, in hepatocarcinoma-derived Huh-7 cells, combined activation of FXRα by GW4064 and SIRT1 by activator 3 increased HBV core promoter-controlled luciferase expression by 25-fold, compared with a 10-fold increase with GW4064 alone. Using cell lines differentially expressing FXRα in overexpression and silencing experiments, we demonstrated that SIRT1 activated the core promoter in an FXRα- and PGC-1α-dependent manner. Maximal activation (>150-fold) was observed in FXRα- and PGC-1α-overexpressing Huh-7 cells treated with FXRα and SIRT1 activators. Similarly, in cells transfected with full-length HBV genomes, maximal induction (3.5-fold) of core promoter-controlled synthesis of 3.5-kb RNA was observed in the same conditions of transfection and treatments. Thus, we identified a subnetwork of metabolic factors regulating HBV replication, strengthening the hypothesis that transcription of HBV and metabolic genes is similarly controlled.


Assuntos
Vírus da Hepatite B/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Sirtuína 1/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Sequência de Bases , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Primers do DNA , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , RNA Interferente Pequeno
2.
Intensive Care Med ; 37(5): 861-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21369811

RESUMO

PURPOSE: To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. METHODS: Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. RESULTS: Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. CONCLUSIONS: Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.


Assuntos
Canais KATP/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Choque Séptico/metabolismo , Animais , Western Blotting , França , Masculino , Artérias Mesentéricas/metabolismo , Fenilefrina/farmacologia , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Choque Séptico/complicações , Choque Séptico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA