RESUMO
Hereditary spherocytosis (HS) is a common inherited haemolytic anaemia attributed to disturbances in five different red cell membrane proteins. We performed a retrospective study of 166 children with HS and describe the clinical phenotype according to the genotype. In 160/166 (97%) children with HS a disease-causing mutation was identified. Pathogenic variants in ANK1, SPTB, SLC4A1 and SPTA1 were found in 49%, 33%, 13% and 5% of patients. Children with SLC4A1-HS had the mildest phenotype, showing the highest haemoglobin (P < 0·001), lowest reticulocyte counts (P < 0·001) and lowest unconjugated bilirubin levels (P = 0·006), and none required splenectomy in childhood (P < 0·001). Conversely, children with autosomal recessive SPTA1-HS had the most severe clinical phenotype, with almost all patients undergoing splenectomy in early childhood. Patients with ANK1 and SPTB variants showed a similar clinical phenotype. Within each gene, variant type or location did not predict disease severity or likelihood of splenectomy. Among patients with a genetic diagnosis, 47 (29%) underwent splenectomy (23 partial; 24 total) while 57 (36%) underwent cholecystectomy. Total splenectomy led to greater improvements in haemoglobin (P = 0·02). Select use of genetic testing (especially in patients without a family history) may help predict clinical phenotype in childhood and guide family counselling.
Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Adolescente , Fatores Etários , Alelos , Contagem de Células Sanguíneas , Criança , Pré-Escolar , Terapia Combinada , Feminino , Testes Genéticos , Genótipo , Humanos , Masculino , Mutação , Fenótipo , Estudos Retrospectivos , Esferocitose Hereditária/sangue , Esferocitose Hereditária/terapiaRESUMO
We describe a Caucasian family with asymptomatic, nonconsanguineous parents, and a daughter with unexplained microcytic anemia diagnosed on routine hemoglobin screening at her 12-month well child check. After failed response to oral and parental iron supplementation, iron refractory iron deficiency anemia was suspected. The family underwent genetic testing and the proband was found to be a compound heterozygote for 2 previously unreported TMPRSS6 variants.
Assuntos
Anemia Ferropriva/genética , Heterozigoto , Proteínas de Membrana/genética , Serina Endopeptidases/genética , Anemia Ferropriva/tratamento farmacológico , Família , Feminino , Humanos , Lactente , Ferro/administração & dosagem , MasculinoRESUMO
BACKGROUND: Animal models of cancer are useful to generate complementary datasets for comparison to human tumor data. Insertional mutagenesis screens, such as those utilizing the Sleeping Beauty (SB) transposon system, provide a model that recapitulates the spontaneous development and progression of human disease. This approach has been widely used to model a variety of cancers in mice. Comprehensive mutation profiles are generated for individual tumors through amplification of transposon insertion sites followed by high-throughput sequencing. Subsequent statistical analyses identify common insertion sites (CISs), which are predicted to be functionally involved in tumorigenesis. Current methods utilized for SB insertion site analysis have some significant limitations. For one, they do not account for transposon footprints - a class of mutation generated following transposon remobilization. Existing methods also discard quantitative sequence data due to uncertainty regarding the extent to which it accurately reflects mutation abundance within a heterogeneous tumor. Additionally, computational analyses generally assume that all potential insertion sites have an equal probability of being detected under non-selective conditions, an assumption without sufficient relevant data. The goal of our study was to address these potential confounding factors in order to enhance functional interpretation of insertion site data from tumors. RESULTS: We describe here a novel method to detect footprints generated by transposon remobilization, which revealed minimal evidence of positive selection in tumors. We also present extensive characterization data demonstrating an ability to reproducibly assign semi-quantitative information to individual insertion sites within a tumor sample. Finally, we identify apparent biases for detection of inserted transposons in several genomic regions that may lead to the identification of false positive CISs. CONCLUSION: The information we provide can be used to refine analyses of data from insertional mutagenesis screens, improving functional interpretation of results and facilitating the identification of genes important in cancer development and progression.
Assuntos
Elementos de DNA Transponíveis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutagênese Insercional , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias/genéticaAssuntos
Transtornos Herdados da Coagulação Sanguínea , Plaquetas/metabolismo , Fibrinólise/genética , Deleção de Genes , Hemorragia , alfa 2-Antiplasmina/deficiência , Adolescente , Transtornos Herdados da Coagulação Sanguínea/sangue , Transtornos Herdados da Coagulação Sanguínea/genética , Hemorragia/sangue , Hemorragia/genética , Humanos , Masculino , TromboelastografiaRESUMO
Chemokines and chemokine receptors are extensively and broadly involved in cancer metastasis. Previously, we demonstrated that epigenetic silencing of the chemokine CXCL12 sensitizes breast and colon cancer cells to endocrine signaling and metastasis to distant tissues. Yet, the precise mechanism whereby CXCL12 production by tumor cells regulates dissemination remains unclear. Here, we show that administration of CXCL12 extended survival of tumor-bearing mice by potently limiting metastasis of colorectal carcinoma or murine melanoma. Because secreted CXCL12 is a mixture of monomeric and dimeric species in equilibrium, oligomeric variants that either promote (monomer) or halt (dimer) chemotaxis were used to dissect the mechanisms interrupting carcinoma metastasis. Monomeric CXCL12 mobilized intracellular calcium, inhibited cAMP signaling, recruited ß-arrestin-2, and stimulated filamentous-actin accumulation and cell migration. Dimeric CXCL12 activated G-protein-dependent calcium flux, adenylyl cyclase inhibition, and the rapid activation of ERK1/2, but only weakly, if at all, recruited arrestin, stimulated actin polymerization, or promoted chemotaxis. NMR analyses illustrated that CXCL12 monomers made specific contacts with CXCR4 that were lost following dimerization. Our results establish the potential for inhibiting CXCR4-mediated metastasis by administration of CXCL12. Chemokine-mediated migration and ß-arrestin responses did not dictate the antitumor effect of CXCL12. We conclude that cellular migration is tightly regulated by selective CXCR4 signaling evoked by unique interactions with distinct ligand quaternary structures.
Assuntos
Quimiocina CXCL12/farmacologia , Neoplasias Colorretais/patologia , Metástase Neoplásica/prevenção & controle , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Actinas/metabolismo , Animais , Arrestinas/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Dimerização , Citometria de Fluxo , Humanos , Camundongos , Ressonância Magnética Nuclear Biomolecular , beta-Arrestina 2 , beta-ArrestinasRESUMO
Objective: In 2021, the Clinical Genome Resource (ClinGen) amyotrophic lateral sclerosis (ALS) spectrum disorders Gene Curation Expert Panel (GCEP) was established to evaluate the strength of evidence for genes previously reported to be associated with ALS. Through this endeavor, we will provide standardized guidance to laboratories on which genes should be included in clinical genetic testing panels for ALS. In this manuscript, we aimed to assess the heterogeneity in the current global landscape of clinical genetic testing for ALS. Methods: We reviewed the National Institutes of Health (NIH) Genetic Testing Registry (GTR) and members of the ALS GCEP to source frequently used testing panels and compare the genes included on the tests. Results: 14 clinical panels specific to ALS from 14 laboratories covered 4 to 54 genes. All panels report on ANG, SOD1, TARDBP, and VAPB; 50% included or offered the option of including C9orf72 hexanucleotide repeat expansion (HRE) analysis. Of the 91 genes included in at least one of the panels, 40 (44.0%) were included on only a single panel. We could not find a direct link to ALS in the literature for 14 (15.4%) included genes. Conclusions: The variability across the surveyed clinical genetic panels is concerning due to the possibility of reduced diagnostic yields in clinical practice and risk of a missed diagnoses for patients. Our results highlight the necessity for consensus regarding the appropriateness of gene inclusions in clinical genetic ALS tests to improve its application for patients living with ALS and their families.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Mutação , Testes Genéticos/métodos , Proteína C9orf72/genéticaRESUMO
Preliminary evidence suggests that commonly used genetic tests may be less likely to identify a genetic etiology for ALS-FTD in patients of underrepresented race, ethnicity, and ancestry (REA), as compared to European REA. Patients of underrepresented REA may therefore be less likely to receive accurate and specific genetic counseling information and less likely to have access to gene-targeted therapies currently in clinical trials. We compiled outcome data from 1911 ALS-FTD patients tested at a commercial laboratory over a seven-year period for C9orf72 hexanucleotide repeat expansion (HRE) alone or C9orf72 and multigene sequencing panel testing. We compared the incidence of pathogenic (P), likely pathogenic (LP), and uncertain variants in C9orf72 and other ALS-FTD genes, as well as age at testing, in patients of different REA. The diagnostic rate in patients of European REA (377/1595, 23.64%) was significantly higher than in patients of underrepresented REA (44/316, 13.92%) (p < 0.001). Patients of European REA were more likely to have the C9orf72 HRE (21.3%) than patients of underrepresented REA (10.4%) (p < 0.001). The overall distribution of positive test outcomes in all tested genes was significantly different between the two groups, with relatively more P and LP variants in genes other than C9orf72 identified in patients of underrepresented REA. The incidence of uncertain test outcomes was not significantly different between patients of European and underrepresented REA. Patients with positive test outcomes were more likely to be younger than those with negative or uncertain outcomes. Although C9orf72 HRE assay has been advocated as the first, and in some cases, only genetic test offered to patients with ALS-FTD in the clinical setting, this practice may result in the reduced ascertainment of genetic ALS-FTD in patients of diverse REA.
Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Etnicidade/genética , Demência Frontotemporal/patologia , Perfil Genético , Mutação , Grupos Raciais/genética , Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA , Feminino , Demência Frontotemporal/genética , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
OBJECTIVE: To report the frequency of amyotrophic lateral sclerosis (ALS) genetic variants in a nationwide cohort of clinic-based patients with ALS with a family history of ALS (fALS), dementia (dALS), or both ALS and dementia (fALS/dALS). METHODS: A multicenter, prospective cohort of 573 patients with fALS, dALS, or fALS/dALS, underwent genetic testing in the ALS Genetic Access Program (ALS GAP), a clinical program for clinics of the Northeast ALS Consortium. Patients with dALS underwent C9orf72 hexanucleotide repeat expansion (HRE) testing; those with fALS or fALS/dALS underwent C9orf72 HRE testing, followed by sequencing of SOD1, FUS, TARDBP, TBK1, and VCP. RESULTS: A pathogenic (P) or likely pathogenic (LP) variant was identified in 171/573 (30%) of program participants. About half of patients with fALS or fALS/dALS (138/301, 45.8%) had either a C9orf72 HRE or a P or LP variant identified in SOD1, FUS, TARDBP, TBK1, or VCP. The use of a targeted, 5-gene sequencing panel resulted in far fewer uncertain test outcomes in familial cases compared with larger panels used in other in clinic-based cohorts. Among dALS cases 11.8% (32/270) were found to have the C9orf72 HRE. Patients of non-Caucasian geoancestry were less likely to test positive for the C9orf72 HRE, but were more likely to test positive on panel testing, compared with those of Caucasian ancestry. CONCLUSIONS: The ALS GAP program provided a genetic diagnosis to â¼1 in 3 participants and may serve as a model for clinical genetic testing in ALS.
RESUMO
BACKGROUND & AIMS: CXCL12 and CXCR4 signaling plays critical roles in development, homeostasis, and tumor metastasis. Previously, we have shown that epigenetic silencing of CXCL12 in colorectal and mammary carcinomas promotes metastasis. Anoikis is an essential process of colonic epithelial turnover and limits the metastatic progression of carcinoma. We sought to determine the role for anoikis in limiting tumor metastasis following reexpression of CXCL12 in human colorectal carcinoma cells. METHODS: Tumor formation and metastasis of colonic carcinoma cells was monitored using in vivo bioluminescence imaging. Anoikis was defined by using caspase-3/7, focal adhesion kinase (FAK) and p130Cas cleavage, DNA fragmentation, and cell survival assays. Phosphorylation of extracellular-regulated kinase-1/2 (ERK1/2) was monitored by immunoblot and immunohistochemistry, and activity was inhibited by using U0126. RESULTS: Constitutive expression of CXCL12 in human colorectal carcinoma cells reduced orthotopic tumor formation and inhibited metastasis in severe combined immunodeficient mice. Further, CXCL12 expression induced apoptosis specifically in nonadherent colorectal carcinoma cells. Apoptotic cell death was preceded by hypophosphorylation and cleavage of FAK and p130Cas, leading to increased cellular detachment in culture, and depended on alterations in the extracellular matrix. Similar to in vivo colonic epithelium, CXCL12-induced anoikis of carcinoma cells depended on basal ERK1/2 activation. CONCLUSIONS: These data significantly expand the current paradigm of chemokine signaling in carcinogenesis by showing that endogenous CXCL12, in marked contrast to exogenous ligand, inhibits tumor metastasis through increased anoikis. Altered ERK1/2 signaling provides a mechanism for the dichotomy between the physiologic and pathophysiologic roles of CXCL12-CXCR4 signaling in the intestinal epithelium.
Assuntos
Anoikis , Quimiocina CXCL12/metabolismo , Neoplasias Colorretais/patologia , Transdução de Sinais , Animais , Anoikis/efeitos dos fármacos , Comunicação Autócrina , Butadienos/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Adesão Celular , Sobrevivência Celular , Quimiocina CXCL12/genética , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/imunologia , Proteína Substrato Associada a Crk/metabolismo , Fragmentação do DNA , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Células HCT116 , Células HT29 , Humanos , Immunoblotting , Imuno-Histoquímica , Medições Luminescentes , Camundongos , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Metástase Neoplásica , Nitrilas/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , TransfecçãoRESUMO
Insertional mutagenesis is a powerful means of identifying cancer drivers in animal models. We used the Sleeping Beauty (SB) transposon/transposase system to identify activated oncogenes in hematologic cancers in wild-type mice and mice that express a stabilized cyclin E protein (termed cyclin ET74AT393A). Cyclin E governs cell division and is misregulated in human cancers. Cyclin ET74AT393A mice develop ineffective erythropoiesis that resembles early-stage human myelodysplastic syndrome, and we sought to identify oncogenes that might cooperate with cyclin E hyperactivity in leukemogenesis. SB activation in hematopoietic precursors caused T-cell leukemia/lymphomas (T-ALL) and pure red blood cell erythroleukemias (EL). Analysis of >12,000 SB integration sites revealed markedly different oncogene activations in EL and T-ALL: Notch1 and Ikaros were most common in T-ALL, whereas ETS transcription factors (Erg and Ets1) were targeted in most ELs. Cyclin E status did not impact leukemogenesis or oncogene activations. Whereas most SB insertions were lost during culture of EL cell lines, Erg insertions were retained, indicating Erg's key role in these neoplasms. Surprisingly, cyclin ET74AT393A conferred growth factor independence and altered Erg-dependent differentiation in EL cell lines. These studies provide new molecular insights into erythroid leukemia and suggest potential therapeutic targets for human leukemia.
Assuntos
Ciclina E/genética , Leucemia Eritroblástica Aguda/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transposases/genética , Animais , Técnicas de Cultura de Células , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Predisposição Genética para Doença , Camundongos , Mutagênese Insercional , Proteínas Oncogênicas/genética , Regulador Transcricional ERG/genéticaRESUMO
Erythropoietic protoporphyria (EPP) is an autosomal recessive deficiency in heme biosynthesis due to pathogenic variants in the ferrochelatase gene (FECH). Patients present with lifelong photosensitivity and potential liver disease. Here we report a novel FECH variant designated c.904_912+1del found in trans with the c.315-48T>C hypomorphic variant, in one family with three affected individuals. These patients presented with immediate painful cutaneous photosensitivity but no hepatic manifestations. All have elevated protoporphyrin levels consistent with a diagnosis of EPP. Genetic, biochemical, and functional assay results obtained for this family suggest that the unique variant c.904_912+1del is likely pathogenic and thus causative of EPP.
RESUMO
BACKGROUND: Laparoscopic partial splenectomy (LPS) theoretically maintains long-term splenic immune function for children with hereditary spherocytosis (HS). Our goal was to review our results after LPS and to determine if specific genetic mutations influence outcome. METHODS: All children with HS undergoing LPS between 2005 and 2016 were reviewed. RESULTS: Thirty-one children underwent LPS (16 male) at a median age of 9 (range 2-18) years. All experienced an increase in hemoglobin and decrease in reticulocyte count early after LPS and at last follow-up. Twenty-two were sent for genetic analysis. Mutations in α-spectrin, ß-spectrin, and Ankyrin were identified in 6, 5, and 11 patients, respectively. Gene mutation was not correlated with complications, perioperative transfusion, length of hospital stay, or median hemoglobin, platelet, or reticulocyte counts. Three children required completion splenectomy at 10.9, 6.9, and 3.2years post-LPS, each with a different gene mutation. CONCLUSIONS: LPS is effective in reversing anemia and reducing reticulocytosis. So far less than 10% have required completion splenectomy, and those children did benefit from delaying the risks of asplenia. In this preliminary analysis, genetic mutation did not influence outcome after LPS. A larger multicenter study is necessary to further investigate potential correlations with specific genetic mutations. TYPE OF STUDY: Prognosis Study. LEVEL OF EVIDENCE: IV.
Assuntos
Marcadores Genéticos , Laparoscopia , Mutação , Esferocitose Hereditária/cirurgia , Esplenectomia/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Masculino , Estudos Retrospectivos , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Resultado do TratamentoRESUMO
BACKGROUND: Resistance to anoikis, apoptosis triggered by a loss of cellular adhesion to the underlying extracellular matrix, is a hallmark of metastatic cancer. Previously we have shown re-establishment of CXCL12 expression in colorectal carcinoma cells inhibits metastasis by enhancing anoikis sensitivity. The objective of these studies was to define the signaling mechanisms regulating CXCL12-mediated anoikis. METHODOLOGY/PRINCIPAL FINDINGS: Adhesion, examined by crystal violet staining, immunofluorescence microscopy, and immunoblot analysis indicated decreased focal adhesion signaling corresponding with loss of adhesion in cells constitutively simulated by CXCL12. Loss of adhesion was inhibited by pertussis toxin treatment, indicating CXCL12 regulating anoikis through G(αi)-protein coupled receptors. Non-adherent HCT116 and HT29 colorectal carcinoma cells expressing CXCL12 exhibited enhanced anoikis sensitivity by propidium iodide staining, caspase activity assays, and immunoblot compared to GFP control cells. CXCL12 producing carcinomas cultured on poly-HEMA displayed heightened Bim and loss of Mcl-1 and Bcl-2 preceding cytochrome c release, and caspase-9 activation. RNAi knockdown of Bim reversed anoikis sensitivity of CXCL12-expressing cells and fostered increased soft-agar foci formation and hepatic tumors in an orthotopic mouse model of metastasis. CONCLUSIONS/SIGNIFICANCE: These data indicate CXCL12 provides a barrier to metastasis by increasing anoikis via activation of a Bim-mediated intrinsic apoptotic pathway. These results underscore the importance of retaining CXCL12 expression to sensitize colorectal carcinomas to anoikis and minimize tumor progression.