Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 208: 112676, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998810

RESUMO

With the growing awareness of environmental impacts of land degradation, pressure is mounting to improve the health and productivity of degrading soils, which could be achieved through the use of raw and modified biochar materials. The primary objective of the current study was to investigate the efficiency of pristine and Mg-modified rice-straw biochar (RBC and MRBC) for the reduction of greenhouse gases (GHG) emissions and improvement of soil properties. A 90 days' incubation experiment was conducted using treatments which included control (CK), two RBC dosages (1% and 2.5%), and two MRBC doses (1% and 2.5%). Soil physico-chemical and biological properties were monitored to assess the effects due to the treatments. Results showed that both biochars improved soil physicochemical properties as the rate of biochar increased. The higher rates of biochar (RBC2.5 and MRBC2.5) particularly increased enzymatic activities (Catalase, Invertase and Urease) in comparison to the control. Data obtained for phospholipid fatty acid (PLFA) concentration indicated an increase in the Gram-negative bacteria (G-), actinomycetes and total PLFA with the increased biochar rate, while Gram-positive bacteria (G+) showed no changes to either level of biochar. As regards fungi concentration, it decreased with the biochar addition, whereas arbuscular mycorrhizal fungi (AMF) showed non-significant changes. The release of CO2, CH4 and N2O showed a decreasing trend over the time. CO2 cumulative emission decreased for MRBC1 (5%) and MRBC2.5 (9%) over the pristine biochar treatments. The cumulative N2O emission decreased by 15-32% for RBC1 and RBC2.5 and by 22-33% for MRBC1 and MRBC2.5 as compared to the control, whereas CH4 emission showed non-significant changes. Overall, the present study provides for the first-time data that could facilitate the correct use of Mg-modified rice biochar as a soil additive for the mitigation of greenhouse gas emission and improvement of soil properties.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura/métodos , Carvão Vegetal , Óxido Nitroso , Solo/química
2.
Environ Res ; 203: 111879, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390716

RESUMO

To mitigate greenhouse gas (GHG) emissions, different strategies have been proposed, including application of dolomite, crop straw and biochar, thus contributing to cope with the increasing global warming affecting the planet. In the current study, pristine wheat straw biochar (WBC) and magnesium (MgCl2.6H2O) modified wheat straw biochar (MWBC) were used. Treatments included control (CK), two WBC dosages (1% and 2.5%), and two MWBC doses (1% and 2.5%). After 90 days of incubation, WBC and MWBC improved the soil physiochemical properties, being more pronounced with increasing rates of biochar. MWBC2.5 significantly decreased microbial biomass carbon (MBC), while microbial biomass nitrogen (MBN) increased when both biochar materials (WBC1 and MWBC1) were applied at low rate. Compared to control soil, Urease and Alkaline phosphatase activities increased with the increasing rate of WBC and MWBC. The activities of dehydrogenase and ß-glucosidase decreased with the WBC and MWBC application, compared to CK. The fluxes of all the three GHGs evaluated (CO2, CH4 and N2O) decreased with time for both biochar amendments, while cumulative emission of CO2 increased by 58% and 45% for WBC, and by 54% and 41% for MWBC, as compared to CK. The N2O cumulative emissions decreased by 18 and 34% for WBC, and by 25 and 41% for MWBC, compared to CK, whereas cumulative methane emission showed non-significant differences among all treatments. These findings indicate that Mg-modified wheat straw biochar would be an appropriate management strategy aiding to reduce GHG emissions and improving the physiochemical properties of affected soils, and specifically of the red dry land soil investigated in the current work.


Assuntos
Gases de Efeito Estufa , Agricultura , Carvão Vegetal , Magnésio , Óxido Nitroso , Solo , Triticum
3.
Sci Rep ; 11(1): 22506, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795355

RESUMO

Nutrient-deficient red soil found in the southern region of China is increasingly being used for potato crops to meet the demand for this staple food. The application of nitrogen fertilizer is necessary to support the production of higher tuber yields; however, the links between nitrate nitrogen and the nitrogen balance in red soil are unknown. A field experiment was conducted in Jiangxi Province in 2017 and 2018 to determine the effects of different nitrogen application rates, 0 kg ha-1 (N0), 60 kg ha-1 (N60), 120 kg ha-1 (N120), 150 kg ha-1 (N150), 180 kg ha-1 (N180), 210 kg ha-1 (N210), and 240 kg ha-1 (N240, the highest rate used by local farmers), on potatoes growing in red soil. Data on tuber yield, crop nitrogen uptake, and the apparent nitrogen balance from the different treatments were collected when potatoes were harvested. Additionally, the content and stock of nitrate nitrogen at different soil depths were also measured. Nitrogen fertilization increased tuber yield but not significantly at application rates higher than 150 kg ha-1. We estimated that the threshold rates of nitrogen fertilizer application were 191 kg ha-1 in 2017 and 227 kg ha-1 in 2018, where the respective tuber yields were 19.7 and 20.4 t ha-1. Nitrogen uptake in potato in all nitrogen fertilization treatments was greater than that in N0 by 61.2-237% and 76.4-284% in 2017 and 2018, respectively. The apparent nitrogen surplus (the amount of nitrogen remaining from any nitrogen input minus nitrogen uptake) increased with increasing nitrogen application rates. The nitrate nitrogen stock at a soil depth of 0-60 cm was higher in the 210 and 240 kg ha-1 nitrogen rate treatments than in the other treatments. Moreover, double linear equations indicated that greater levels of nitrogen surplus increased the nitrate nitrogen content and stock in soils at 0-60 cm depths. Therefore, we estimate that the highest tuber yields of potato can be attained when 191-227 kg ha-1 nitrogen fertilizer is applied to red soil. Thus, the risk of nitrate nitrogen leaching from red soil increases exponentially when the apparent nitrogen balance rises above 94.3-100 kg ha-1.

4.
Environ Sci Pollut Res Int ; 23(11): 10863-10871, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26897580

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and toxic to humans through ingestion of contaminated food crops. PAHs can enter crop roots through proton/PAH symporters; however, to date, the symporter remains unclear. Here we reveal, for the first time, the plasma membrane proteome of Triticum aestivum seedling roots in response to phenanthrene (a model PAH) exposure. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF-MS and protein database search engines were employed to analyze and identify phenanthrene-responsive proteins. Over 192 protein spots are reproducibly detected in each gel, while 8 spots are differentially expressed under phenanthrene treatment. Phenanthrene induces five up-regulated proteins distinguished as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 2, enolase, heat shock protein 80-2, probable mediator of RNA polymerase II transcription subunit 37e (heat shock 70-kDa protein 1), and lactoylglutathione lyase. Three proteins identified as adenosine kinase 2, 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside beta-D-glucosidase 1c, and glyceraldehyde-3-phosphate dehydrogenase 3 are down-regulated under exposure to phenanthrene. The up-regulated proteins are related to plant defense response, antioxidant system, and glycolysis. The down-regulated proteins involve the metabolism of high-energy compounds and plant growth. Magnesium, which is able to bind to enolase, can enhance the transport of phenanthrene into wheat roots. Therefore, it is concluded that phenanthrene can induce differential expression of proteins in relation to carbohydrate metabolism, self-defense, and plant growth on wheat root plasma membrane. This study not only provides novel insights into PAH uptake by plant roots and PAH stress responses, but is also a good starting point for further determination and analyses of their functions using genetic and other approaches.


Assuntos
Proteínas de Membrana/metabolismo , Fenantrenos/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/farmacologia , Triticum/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/metabolismo , Fenantrenos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos , Proteoma/metabolismo , Proteômica , Plântula/efeitos dos fármacos , Plântula/metabolismo , Poluentes do Solo/metabolismo , Triticum/efeitos dos fármacos
5.
Huan Jing Ke Xue ; 36(2): 700-5, 2015 Feb.
Artigo em Zh | MEDLINE | ID: mdl-26031101

RESUMO

It is of great importance to investigate the extraction of polycyclic aromatic hydrocarbons (PAHs) in plant root apoplast solution for elucidating the mechanisms underlying root absorption and translocation of PAHs and their control. However, little information is available on the extraction of plant root apoplast solution to date. In this study, wheat was employed and phenanthrene was used as the representative of PAHs. Phenanthrene extracted from wheat root apoplast solution increased with increasing vaccum degree, vacuum time, centrifugal speed and centrifugal time. Glucose- 6-phosphate dehydrogenase (G6PGH) activity in wheat root apoplast solution was enhanced with increasing vacuum degree, vacuum time, centrifugal speed and centrifugal time. For the vacuum infiltration centrifugation extraction, the optimal vacuum degree was 70 kPa, the optimal vacuum time was 10 min, the optimal centrifugal speed was 3 068 r x min(-1), and the optimal centrifugal time was 15 min. Our results provide a more convenient and effective method for investigation on pollutant transport in plant root apoplast.


Assuntos
Fenantrenos/química , Raízes de Plantas/metabolismo , Triticum/metabolismo , Poluentes do Solo/química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA