Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 410-418, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154093

RESUMO

Under the control of chiral ligand glutathione and in the presence of hexadecyltrimethylammonium bromide, Au deposition on Au seeds is known to give chiral nanostructures. We have previously shown that the protruding chiral patterns, as opposed to flat facets, are likely caused by active surface growth, where nonuniform ligand coverage could be responsible for the focused growth at a few active sites. By pushing the limit of such a growth mode, here, we use decahedral seeds to prepare homochiral nanopropellers with intricate patterns of deep valleys and protruding ridges. Control experiments show that the focused growth depends on the rates of Au deposition by changing either the seed concentration or the reductant concentration, consistent with the proposed mechanism. The dynamic growth competition between the ligand-deficient active sites and the ligand-rich surfaces gradually focuses the growth onto a few active sites, causing the expansion of grooves, squeezing of steep ridges, and a surprising 36° rotation of the pentagonal outline. The imbalanced deposition on the prochiral slopes is responsible for the tilted grooves, the twisted walls, and thus the well-separated and distorted blades, which become the origin of the chiroptical responses.

2.
J Neurosci Res ; 102(1): e25293, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284838

RESUMO

Neurovascular coupling (NVC) provides new insights into migraine, a neurological disorder impacting over one billion people worldwide. This study compared NVC and cerebral blood flow (CBF) in patients with migraine without aura (MwoA) and healthy controls. About 55 MwoA patients in the interictal phase and 40 age- and sex-matched healthy controls underwent resting-state functional magnetic resonance imaging and arterial spin-labeling perfusion imaging scans. The CBF and resting-state neuronal activity indicators, including the amplitudes of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC), were calculated for each participant. The global and regional NVCs were assessed using cross-voxel CBF-neuronal activity correlations and CBF/neuronal activity ratios. Patients with MwoA showed increased CBF/ALFF ratios in the left media, superior and inferior frontal gyri, and anterior cingulate gyrus, increased CBF/DC ratios in the left middle and inferior frontal gyri, and increased CBF/ReHo ratios in the right corpus callosum and right posterior cingulate gyrus. Lower CBF/ALFF ratios in the right rectal gyrus, the left orbital gyrus, the right inferior frontal gyrus, and the right superior temporal gyrus were also found in the MwoA patients. Furthermore, the CBF/ALFF ratios in the inferior frontal and superior temporal gyri were positively correlated with the Headache Impact Test scores and Hamilton anxiety scale scores in the MwoA patients. These findings provide evidence for the theory that abnormal NVC contributes to MwoA.


Assuntos
Enxaqueca sem Aura , Acoplamento Neurovascular , Humanos , Enxaqueca sem Aura/diagnóstico por imagem , Circulação Cerebrovascular , Lobo Frontal , Corpo Caloso
3.
Opt Express ; 32(10): 17197-17210, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858909

RESUMO

The perovskite solar cell (PSC) has the benefits of flexibility, inexpensiveness, and high efficiency, and has important prospective applications. However, serious optical losing and low solar energy-utilizing efficiency remain a challenge for the ultra-thin PSCs because of the interface reflection of traditional planar structure. In this study, a hierarchical pore structure with a confined resonant mode is introduced and optimized by electromagnetic theory to improve the solar energy absorbing and utilizing efficiency of ultra-thin PSCs. The large pores in the top layer that support a whispering gallery mode can focus and guide the incident light into the solar cell. The small pores in the bottom layer enable backward scattering of the unabsorbed light and can improve the effective absorption of active layer. The finite-difference time-domain method is employed to optimize the geometric parameters of hierarchical pore structure to improve the light absorption of PSCs. The proposed resonant hierarchical pore structure can greatly improve sunlight absorption of ultra-thin PSCs, and the effective light absorption and photocurrent of PSCs with a hierarchical pore structure is 20.7% higher than that of PSCs with traditional planar structure. This work can offer a beneficial guideline for improving solar energy utilizing efficiency of various thin-film solar cells.

4.
Environ Sci Technol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954631

RESUMO

Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.

5.
Drug Resist Updat ; 66: 100908, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493511

RESUMO

Non-small cell lung cancer is the leading cause of cancer related mortality worldwide, and lung adenocarcinoma (LUAD) is one of the most common subtypes. The role of N6-methyladenosine (m6A) modification in tumorigenesis and drug resistance in LUAD remains unclear. In this study, we evaluated the effects of vir-like m6A methyltransferase-associated protein (KIAA1429) depletion on proliferation, migration, invasion, and drug resistance of LUAD cells, and identified m6A-dependent downstream genes influenced by KIAA1429. We found that KIAA1429 activated Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway as a novel signaling event, which is responsible for tumorigenesis and resistance to gefitinib in LUAD cells. KIAA1429 and MAP3K2 showed high expression in LUAD patients' tissues. Knockdown of KIAA1429 inhibited MAP3K2 expression in an m6A methylation-dependent manner, restraining the progression of LUAD cells and inhibiting growth of gefitinib-resistant HCC827 cells. KIAA1429 positively regulated MAP3K2 expression, activated JNK/ MAPK pathway, and promoted drug resistance in gefitinib-resistant HCC827 cells. We reproduced the in vitro results in nude mouse xenografted with KIAA1429 knockdown cells. Our study showed that the mechanism of m6A KIAA1429-mediated gefitinib resistance in LUAD cells occurs by activating JNK/ MAPK signaling pathway. These findings provide potential targets for molecular therapy and clinical treatment in LUAD patients with gefitinib resistance.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
6.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676092

RESUMO

In recent years, the rapid development of pig farming has led to a large quantity of heavy metal-polluted wastewater. Thus, it was desirable to develop a simple heavy metal detection method for fast monitoring of the wastewater from the pig farms. Therefore, there was an urgent need to develop a simple method for rapidly detecting heavy metal ions in pig farm wastewater. Herein, a simple electrochemical method for simultaneous detection of Cu2+ and Zn2+ was developed and applied to pig farm wastewater. With a glassy carbon electrode and anodic stripping voltammetry, simultaneous detection of Cu2+ and Zn2+ in water was achieved without the need for complicated electrode modification. Furthermore, it was found that the addition of Cd2+ can enhance the response current of the electrode to Zn2+, which increased the signal by eight times. After systematic optimization, the limit of detection (LOD) of 9.3 µg/L for Cu2+ and 45.3 µg/L for Zn2+ was obtained. Finally, it was successfully applied for the quantification of Cu2+ and Zn2+ with high accuracy in pig farm wastewater. This work provided a new and simple solution for fast monitoring of the wastewater from pig farms and demonstrated the potential of electrochemical measurement for application in modern animal husbandry.


Assuntos
Cobre , Técnicas Eletroquímicas , Fazendas , Águas Residuárias , Zinco , Águas Residuárias/química , Águas Residuárias/análise , Cobre/análise , Cobre/química , Zinco/análise , Zinco/química , Animais , Suínos , Técnicas Eletroquímicas/métodos , Poluentes Químicos da Água/análise , Eletrodos , Limite de Detecção
7.
Angew Chem Int Ed Engl ; 63(29): e202402318, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710653

RESUMO

Direct interspecies electron transfer (DIET) is essential for maintaining the function and stability of anaerobic microbial consortia. However, only limited natural DIET modes have been identified and DIET engineering remains highly challenging. In this study, an unnatural DIET between Shewanella oneidensis MR-1 (SO, electron donating partner) and Rhodopseudomonas palustris (RP, electron accepting partner) was artificially established by a facile living cell-cell click chemistry strategy. By introducing alkyne- or azide-modified monosaccharides onto the cell outer surface of the target species, precise covalent connections between different species in high proximity were realized through a fast click chemistry reaction. Remarkably, upon covalent connection, outer cell surface C-type cytochromes mediated DIET between SO and RP was achieved and identified, although this was never realized naturally. Moreover, this connection directly shifted the natural H2 mediated interspecies electron transfer (MIET) to DIET between SO and RP, which delivered superior interspecies electron exchange efficiency. Therefore, this work demonstrated a naturally unachievable DIET and an unprecedented MIET shift to DIET accomplished by cell-cell distance engineering, offering an efficient and versatile solution for DIET engineering, which extends our understanding of DIET and opens up new avenues for DIET exploration and applications.


Assuntos
Química Click , Rodopseudomonas , Shewanella , Transporte de Elétrons , Shewanella/metabolismo , Shewanella/química , Rodopseudomonas/metabolismo , Rodopseudomonas/química , Azidas/química , Azidas/metabolismo , Alcinos/química
8.
Cerebellum ; 22(5): 840-851, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986875

RESUMO

Somatic symp tom disorders (SSDs) are a group of psychiatric disorders characterized by persistent disproportionate concern and obsessive behaviors regarding physical conditions. Currently, SSDs lack effective treatments and their pathophysiology is unclear. In this paper, we aimed to examine microstructural abnormalities in the brains of patients with SSD using diffusion kurtosis imaging (DKI) and to investigate the correlation between these abnormalities and clinical indicators. Diffusion kurtosis images were acquired from 30 patients with SSD and 30 healthy controls (HCs). Whole-brain maps of multiple diffusion measures, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), mean kurtosis (MK), radial kurtosis (RK), and axial kurtosis (AK), were calculated. To analyze differences between the two groups, nonparametric permutation testing with 10,000 randomized permutations and threshold-free cluster enhancement was used with family-wise error-corrected p values < 0.05 as the threshold for statistical significance. Then, the correlations between significant changes in these diffusion measures and clinical factors were examined. Compared to HCs, patients with SSD had significantly higher FA, MK, and RK and significantly lower MD and RD in the cerebellum, thalamus, basal ganglia, and limbic cortex. The FA in the left caudate and the pontine crossing tract were negatively correlated with disease duration; the MD and the RD in the genu of the corpus callosum were positively correlated with disease duration. Our findings highlight the role of the cerebellum-thalamus-basal ganglia-limbic cortex pathway, especially the cerebellum, in SSDs and enhance our understanding of the pathogenesis of SSDs.


Assuntos
Sintomas Inexplicáveis , Transtornos Mentais , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Cerebelo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Gânglios da Base/diagnóstico por imagem
9.
Part Fibre Toxicol ; 20(1): 44, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993864

RESUMO

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging environmental contaminants detected in human samples, and have raised concerns regarding their potential risks to human health, particularly neurotoxicity. This study aimed to investigate the deleterious effects of polystyrene nanoplastics (PS-NPs, 50 nm) and understand their mechanisms in inducing Parkinson's disease (PD)-like neurodegeneration, along with exploring preventive strategies. METHODS: Following exposure to PS-NPs (0.5-500 µg/mL), we assessed cytotoxicity, mitochondrial integrity, ATP levels, and mitochondrial respiration in dopaminergic-differentiated SH-SY5Y cells. Molecular docking and dynamic simulations explored PS-NPs' interactions with mitochondrial complexes. We further probed mitophagy's pivotal role in PS-NP-induced mitochondrial damage and examined melatonin's ameliorative potential in vitro. We validated melatonin's intervention (intraperitoneal, 10 mg/kg/d) in C57BL/6 J mice exposed to 250 mg/kg/d of PS-NPs for 28 days. RESULTS: In our in vitro experiments, we observed PS-NP accumulation in cells, including mitochondria, leading to cell toxicity and reduced viability. Notably, antioxidant treatment failed to fully rescue viability, suggesting reactive oxygen species (ROS)-independent cytotoxicity. PS-NPs caused significant mitochondrial damage, characterized by altered morphology, reduced mitochondrial membrane potential, and decreased ATP production. Subsequent investigations pointed to PS-NP-induced disruption of mitochondrial respiration, potentially through interference with complex I (CI), a concept supported by molecular docking studies highlighting the influence of PS-NPs on CI. Rescue experiments using an AMPK pathway inhibitor (compound C) and an autophagy inhibitor (3-methyladenine) revealed that excessive mitophagy was induced through AMPK/ULK1 pathway activation, worsening mitochondrial damage and subsequent cell death in differentiated SH-SY5Y cells. Notably, we identified melatonin as a potential protective agent, capable of alleviating PS-NP-induced mitochondrial dysfunction. Lastly, our in vivo experiments demonstrated that melatonin could mitigate dopaminergic neuron loss and motor impairments by restoring mitophagy regulation in mice. CONCLUSIONS: Our study demonstrated that PS-NPs disrupt mitochondrial function by affecting CI, leading to excessive mitophagy through the AMPK/ULK1 pathway, causing dopaminergic neuron death. Melatonin can counteract PS-NP-induced mitochondrial dysfunction and motor impairments by regulating mitochondrial autophagy. These findings offer novel insights into the MNP-induced PD-like neurodegenerative mechanisms, and highlight melatonin's protective potential in mitigating the MNP's environmental risk.


Assuntos
Melatonina , Neuroblastoma , Humanos , Camundongos , Animais , Mitofagia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Poliestirenos/metabolismo , Microplásticos , Neurônios Dopaminérgicos/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Simulação de Acoplamento Molecular , Plásticos , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
10.
J Plan Lit ; 38(2): 187-199, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153810

RESUMO

Urban digital twins (UDTs) have been identified as a potential technology to achieve digital transformative positive urban change through landscape architecture and urban planning. However, how this new technology will influence community resilience and adaptation planning is currently unclear. This article: (1) offers a scoping review of existing studies constructing UDTs, (2) identifies challenges and opportunities of UDT technologies for community adaptation planning, and (3) develops a conceptual framework of UDTs for community infrastructure resilience. This article highlights the need for integrating multi-agent interactions, artificial intelligence, and coupled natural-physical-social systems into a human-centered UDTs framework to improve community infrastructure resilience.

11.
J Biol Chem ; 297(4): 101152, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478715

RESUMO

Tissue factor (TF) is the principal initiator of blood coagulation and is necessary for thrombosis. We previously reported that lysophosphatidic acid (LPA), a potent bioactive lipid, highly induces TF expression at the transcriptional level in vascular smooth muscle cells. To date, however, the specific role of the LPA receptor is unknown, and the intracellular signaling pathways that lead to LPA induction of TF have been largely undetermined. In the current study, we found that LPA markedly induced protein kinase D (PKD) activation in mouse aortic smooth muscle cells (MASMCs). Small-interfering RNA-mediated knockdown of PKD2 blocked LPA-induced TF expression and activity, indicating that PKD2 is the key intracellular mediator of LPA signaling leading to the expression and cell surface activity of TF. Furthermore, our data reveal a novel finding that PKD2 mediates LPA-induced TF expression via the p38α and JNK2 MAPK signaling pathways, which are accompanied by the PKD-independent MEK1/2-ERK-JNK pathway. To identify the LPA receptor(s) responsible for LPA-induced TF expression, we isolated MASMCs from LPA receptor-knockout mice. Our results demonstrated that SMCs isolated from LPA receptor 1 (LPA1)-deficient mice completely lost responsiveness to LPA stimulation, which mediates induction of TF expression and activation of PKD and p38/JNK MAPK, indicating that LPA1 is responsible for PKD2-mediated activation of JNK2 and p38α. Taken together, our data reveal a new signaling mechanism in which the LPA1-PKD2 axis mediates LPA-induced TF expression via the p38α and JNK2 pathways. This finding provides new insights into LPA signaling, the PKD2 pathway, and the mechanisms of coagulation/atherothrombosis.


Assuntos
Aorta/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Ativação Enzimática , Lisofosfolipídeos/metabolismo , Camundongos
12.
Ecotoxicol Environ Saf ; 231: 113180, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026584

RESUMO

1,2-Dichloroethane (1,2-DCE) is a pervasive environmental pollutant, and overexposure to this hazardous material causes brain edema and demyelination in humans. We found that 1,2-DCE inhibits aquaporin 4 (AQP4) and is a primary pathogenic effector of 1,2-DCE-induced brain edema in animals. However, AQP4 down-regulation's link with cortex demyelination after 1,2-DCE exposure remains unclear. Thus, we exposed wild-type (WT) CD-1 mice and AQP4 knockout (AQP4-KO) mice to 0, 100, 350 and 700 mg/m3 1,2-DCE by inhalation for 28 days. We applied label-free proteomics and a cell co-culture system to elucidate the role of AQP4 inhibition in 1,2-DCE-induced demyelination. The results showed that 1,2-DCE down-regulated AQP4 in the WT mouse cortexes. Both 1,2-DCE exposure and AQP4 deletion induced neurotoxicity in mice, including increased brain water content, abnormal pathological vacuolations, and neurobehavioral damage. Tests for interaction of multiple regression analysis highlighted different effects of 1,2-DCE exposure level depending on the genotype, indicating the core role of AQP4 in regulation on 1,2-DCE-caused neurotoxicity. We used label-free quantitative proteomics to detect differentially expressed proteins associated with 1,2-DCE exposure and AQP4 inhibition, and identified down-regulation in myelin basic protein (MBP) and tyrosine-protein kinase Fyn (FYN) in a dose-dependent manner in WT mice but not in AQP4-KO mice. 1,2-DCE and AQP4 deletion separately resulted in demyelination, as detected by Luxol fast blue staining, and manifested as disordered nerve fibers and cavitation in the cortexes. Western blot and immunofluorescence confirmed the decreased AQP4 in the astrocytes and the down-regulated MBP in the oligodendrocytes by 1,2-DCE exposure and AQP4 inhibition, respectively. Finally, the co-culture results of SVG p12 and MO3.13 cells showed that 1,2-DCE-induced AQP4 down-regulation in the astrocytes was responsible for demyelination, by decreasing MBP in the oligodendrocytes. In conclusion, 1,2-DCE induced cortex demyelination by depressing MBP via AQP4 inhibition in the mice.


Assuntos
Aquaporina 4 , Doenças Desmielinizantes , Animais , Aquaporina 4/genética , Doenças Desmielinizantes/induzido quimicamente , Dicloretos de Etileno/toxicidade , Camundongos , Proteína Básica da Mielina/genética
13.
Drug Dev Ind Pharm ; 46(8): 1345-1353, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32643448

RESUMO

PURPOSE: Huashi Baidu formula (HSBDF) was developed to treat the patients with severe COVID-19 in China. The purpose of this study was to explore its active compounds and demonstrate its mechanisms against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through network pharmacology and molecular docking. METHODS: All the components of HSBDF were retrieved from the pharmacology database of TCM system. The genes corresponding to the targets were retrieved using UniProt and GeneCards database. The herb-compound-target network was constructed by Cytoscape. The target protein-protein interaction network was built using STRING database. The core targets of HSBDF were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The main active compounds of HSBDF were docked with SARS-CoV-2 and angiotensin converting enzyme II (ACE2). RESULTS: Compound-target network mainly contained 178 compounds and 272 corresponding targets. Key targets contained MAPK3, MAPK8, TP53, CASP3, IL6, TNF, MAPK1, CCL2, PTGS2, etc. There were 522 GO items in GO enrichment analysis (p < .05) and 168 signaling pathways (p < .05) in KEGG, mainly including TNF signaling pathway, PI3K-Akt signaling pathway, NOD-like receptor signaling pathway, MAPK signaling pathway, and HIF-1 signaling pathway. The results of molecular docking showed that baicalein and quercetin were the top two compounds of HSBDF, which had high affinity with ACE2. CONCLUSION: Baicalein and quercetin in HSBDF may regulate multiple signaling pathways through ACE2, which might play a therapeutic role on COVID-19.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular/métodos , Farmacologia Clínica/métodos , Pneumonia Viral/tratamento farmacológico , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/química , Betacoronavirus/genética , COVID-19 , China , Bases de Dados Factuais , Ontologia Genética , Marcação de Genes , Genes Virais/efeitos dos fármacos , Genes Virais/genética , Humanos , Medicina Tradicional Chinesa , Pandemias , Peptidil Dipeptidase A/efeitos dos fármacos , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tratamento Farmacológico da COVID-19
14.
J Cell Physiol ; 234(11): 20859-20868, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30997686

RESUMO

Vascular invasion (VI) in hepatocellular carcinoma (HCC) is an important clinical parameter to predict survival. In this study, we collected microRNA (miRNA) expression data from HCC patients using The Cancer Genome Atlas database and identified a novel miRNA signature associated with VI. First, we categorized HCC patients into groups with or without VI (VI+ and VI-). We identified three miRNAs (miRNA-210, miRNA-10b, and miRNA-9-1) that were associated with VI according to a Kaplan-Meier analysis. This three-miRNA signature exhibited good predictive ability for VI in patients with HCC according to a receiver operating characteristic curve analysis at 1, 3, and 5 years. Patients with HCC with a high risk score exhibited a trend toward worse outcomes as determined by multivariable Cox regression and stratified analyses. This three-miRNA signature provides an accurate prediction of VI and can be used as an independent prognostic indicator for predicting VI in HCC patients.


Assuntos
Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/genética , Perfilação da Expressão Gênica , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Animais , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , MicroRNAs/genética , Prognóstico , Reprodutibilidade dos Testes , Fatores de Risco , Análise de Sobrevida
15.
Gastrointest Endosc ; 84(6): 917-923.e5, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27189657

RESUMO

BACKGROUND AND AIMS: Image quality can be guaranteed with the conventional dosage of fluorescein sodium in probe-based confocal laser endomicroscopy (pCLE). However, yellow discoloration of the skin seriously affects daily life and simultaneously increases the risk of adverse events such as allergic reactions. The aim of this study was to test whether a lower dosage of fluorescein sodium can provide satisfactory image quality and to compare the diagnostic accuracy of gastric intestinal metaplasia (GIM) through a randomized blind controlled trial. METHODS: Consecutive patients were randomly assigned to different doses of fluorescein sodium. Image quality was determined by the endoscopists' subjective assessments and signal-to-noise ratio (SNR) assessment systems. Skin discoloration was tested using a neonatal transcutaneous jaundice detector. In addition, consecutive patients with a known or suspected diagnosis of GIM were examined by pCLE with the lower dose and the traditional dose. RESULTS: Only 0.01 mL/kg dose of 10% fluorescein sodium led to a significant decrease in image quality (P < .05), and a dose of 0.02 mL/kg had the highest SNR value (P < .05). There were no significant differences in skin discoloration between the 0.01 mL/kg and 0.02 mL/kg doses (P = .148) and no statistical difference in the diagnostic accuracy of pCLE for GIM between the 0.02 mL/kg and 0.10 mL/kg doses (P > .05). The kappa values for the correlation between pCLE and histopathology were 0.867 (95% confidence interval, 0.782-0.952) and 0.891 (95% confidence interval, 0.811-0.971). CONCLUSIONS: The 0.02 mL/kg dose of 10% fluorescein sodium seems to be the best dose for pCLE in the upper GI tract, with comparable image quality with the conventional dose and insignificant skin discoloration. This dose is also very efficient for the diagnosis of GIM.


Assuntos
Meios de Contraste/administração & dosagem , Fluoresceína/administração & dosagem , Trato Gastrointestinal/patologia , Microscopia Intravital/métodos , Adulto , Idoso , Meios de Contraste/efeitos adversos , Endoscopia Gastrointestinal , Estudos de Viabilidade , Feminino , Fluoresceína/efeitos adversos , Humanos , Microscopia Intravital/normas , Masculino , Metaplasia/diagnóstico por imagem , Microscopia Confocal/métodos , Microscopia Confocal/normas , Pessoa de Meia-Idade , Transtornos da Pigmentação/induzido quimicamente , Razão Sinal-Ruído , Método Simples-Cego , Pigmentação da Pele/efeitos dos fármacos , Adulto Jovem
16.
Neuroimage ; 94: 1-11, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24642284

RESUMO

Neuronal activity produces transient ionic currents that may be detectable using magnetic resonance imaging (MRI). We examined the feasibility of MRI-based detection of neuronal currents using computer simulations based on the laminar cortex model (LCM). Instead of simulating the activity of single neurons, we decomposed neuronal activity to action potentials (AP) and postsynaptic potentials (PSP). The geometries of dendrites and axons were generated dynamically to account for diverse neuronal morphologies. Magnetic fields associated with APs and PSPs were calculated during spontaneous and stimulated cortical activity, from which the neuronal current induced MRI signal was determined. We found that the MRI signal magnitude change (<0.1 ppm) is below currently detectable levels but that the signal phase change is likely to be detectable. Furthermore, neuronal MRI signals are sensitive to temporal and spatial variations in neuronal activity but independent of the intensity of neuronal activation. Synchronised neuronal activity produces large phase changes (in the order of 0.1 mrad). However, signal phase oscillates with neuronal activity. Consequently, MRI scans need to be synchronised with neuronal oscillations to maximise the likelihood of detecting signal phase changes due to neuronal currents. These findings inform the design of MRI experiments to detect neuronal currents.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Potenciais Sinápticos/fisiologia , Simulação por Computador , Estudos de Viabilidade , Humanos , Oscilometria/métodos
17.
Org Lett ; 26(22): 4721-4726, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38805032

RESUMO

A photoinduced electron transfer (PET)-triggered cascade reaction has been devised for the conversion of second-generation enol silyl ethers into angularly fused tricyclic scaffolds. Utilizing readily available and cost-effective DCA and phenanthrene as the catalytic systems, this cascade transformation is achieved with high efficiency. The reaction demonstrates a good substrate scope and excellent stereoselectivity, thereby enriching the realm of PET-induced cascade reactions. Additionally, the radical adducts generated through this process can serve as valuable subunits for the synthesis of complex molecules.

18.
ACS Nano ; 18(13): 9613-9626, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502546

RESUMO

Recent discoveries in commensal microbiota demonstrate the great promise of intratumoral bacteria as attractive molecular targets of tumors in improving cancer treatment. However, direct leveraging of in vivo antibacterial strategies such as antibiotics to potentiate cancer therapy often leads to uncertain effectiveness, mainly due to poor selectivity and potential adverse effects. Here, building from the clinical discovery that patients with breast cancer featured rich commensal bacteria, we developed an activatable biointerface by encapsulating commensal bacteria-derived extracellular vesicles (BEV) with a responsive nanocloak to potentiate immunoreactivity against intratumoral bacteria and breast cancer. We show that the interfacially cloaked BEV (cBEV) not only overcame serious systemic side responses but also demonstrated heightened immunogenicity by intercellular responsive immunogenicity, facilitating dendritic cell maturation through activating the cGAS-STING pathway. As a preventive measure, vaccination with nanocloaked cBEVs achieved strong protection against bacterial infection, largely providing prophylactic efficiency against tumor challenges. When treated in conjunction with immune checkpoint inhibitor anti-PD-L1 antibodies, the combined approach elicited a potent tumor-specific immune response, synergistically inhibiting tumor progression and mitigating lung metastases.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Imunoterapia , Neoplasias/terapia , Neoplasias da Mama/metabolismo , Imunidade , Bactérias , Microambiente Tumoral
19.
Environ Int ; 184: 108480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38341879

RESUMO

1,2-Dichloroethane (1,2-DCE) is a prevalent environmental contaminant, and our study revealed its induction of testicular toxicity in mice upon subacute exposure. Melatonin, a prominent secretory product of the pineal gland, has been shown to offer protection against pyroptosis in male reproductive toxicity. However, the exact mechanism underlying 1,2-DCE-induced testicular toxicity and the comprehensive extent of melatonin's protective effects in this regard remain largely unexplored. Therefore, we sequenced testis piRNAs in mice exposed to environmentally relevant concentrations of 1,2-DCE by 28-day dynamic inhalation, and investigated the role of key piRNAs using GC-2 spd cells. Our results showed that 1,2-DCE induced mouse testicular damage and GC-2 spd cell pyroptosis. 1,2-DCE upregulated the expression of pyroptosis-correlated proteins in both mouse testes and GC-2 spd cells. 1,2-DCE exposure caused pore formation on cellular membranes and lactate dehydrogenase leakage in GC-2 spd cells. Additionally, we identified three upregulated piRNAs in 1,2-DCE-exposed mouse testes, among which piR-mmu-1019957 induced pyroptosis in GC-2 spd cells, and its inhibition alleviated 1,2-DCE-induced pyroptosis. PiR-mmu-1019957 mimic and 1,2-DCE treatment activated the expression of interferon regulatory factor 7 (IRF7) in GC-2 spd cells. IRF7 knockdown reversed 1,2-DCE-induced cellular pyroptosis, and overexpression of piR-mmu-1019957 did not promote pyroptosis when IRF7 was inhibited. Notably, melatonin reversed 1,2-DCE-caused testicular toxicity, cellular pyroptosis, and upregulated piR-mmu-1019957 and IRF7. Collectively, our findings indicated that melatonin mitigates this effect, suggesting its potential as a therapeutic intervention against 1,2-DCE-induced male reproductive toxicity in clinical practice.


Assuntos
Dicloretos de Etileno , Melatonina , Testículo , Masculino , Camundongos , Animais , Piroptose , Melatonina/farmacologia , Melatonina/metabolismo , RNA de Interação com Piwi , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/farmacologia
20.
Adv Sci (Weinh) ; : e2401009, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751156

RESUMO

Biodegradable plastics, hailed for their environmental friendliness, may pose unforeseen risks as they undergo gastrointestinal degradation, forming oligomer nanoplastics. Despite this, the influence of gastrointestinal degradation on the potential human toxicity of biodegradable plastics remains poorly understood. To this end, the impact of the murine in vivo digestive system is investigated on the biotransformation, biodistribution, and toxicity of PLA polymer and PLA oligomer MPs. Through a 28-day repeated oral gavage study in mice, it is revealed that PLA polymer and oligomer microplastics undergo incomplete and complete degradation, respectively, in the gastrointestinal tract. Incompletely degraded PLA polymer microplastics transform into oligomer nanoplastics, heightening bioavailability and toxicity, thereby exacerbating overall toxic effects. Conversely, complete degradation of PLA oligomer microplastics reduces bioavailability and mitigates toxicity, offering a potential avenue for toxicity reduction. Additionally, the study illuminates shared targets and toxicity mechanisms in Parkinson's disease-like neurotoxicity induced by both PLA polymer and PLA oligomer microplastics. This involves the upregulation of MICU3 in midbrains, leading to neuronal mitochondrial calcium overload. Notably, neurotoxicity is mitigated by inhibiting mitochondrial calcium influx with MCU-i4 or facilitating mitochondrial calcium efflux with DBcAMP in mice. These findings enhance the understanding of the toxicological implications of biodegradable microplastics on human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA