Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 15511-15526, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585092

RESUMO

In situ conversion technology is a green and effective way to realize the development of organic-rich shale. Supercritical CO2 can be used as a good heating medium for shale in situ conversion. Numerical simulation is an important means to explore the shale in situ conversion process, but it requires a lot of time and computational cost for in situ conversion simulation under different working conditions. Therefore, a computational framework for rapid prediction of shale in situ conversion development performance and heating parameter optimization is proposed by coupling artificial neural network (ANN) and particle swarm optimization (PSO). The results indicated that kerogen pyrolysis and hydrocarbon product release mainly occurred within 2 years of shale in situ conversion. The production curves of pyrolysis hydrocarbon obviously slowed after in situ conversion for 2 years. The database was constructed by a large number of in situ conversion simulations, and Pearson correlation analysis and the random forest method were adopted to obtain seven main controlling factors affecting reservoir temperature and hydrocarbon production. The determination coefficient of the obtained ANN-based prediction models is higher than 97%, and the mean square error (MSE) is lower than 0.3%. The basic reservoir case can choose to inject 350-450 °C supercritical CO2 (Sc-CO2) fluid with a rate of 600 m3/day to obtain a more promising development effect. The heating parameter optimization for three typical reservoir cases using PSO was performed, and reasonable injection temperature and injection rate were obtained. It realized accurate development prediction and rapid heating parameter optimization, which helps the effective application of shale in situ conversion development design.

2.
Cell Prolif ; 56(3): e13369, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36464792

RESUMO

Salamanders possess a pair of lungs for active air breathing, but the lung respiration is fully operational only during the late stage of development, particularly after metamorphosis. Larval salamanders mainly exchange air through the gills and skin, thus sparing the developing lungs. Salamanders can repair their lungs after injury, but a comparative analysis of regenerative responses between the lungs of young and adult animals is lacking. In this study, lung resections were performed in both larval and adult newts (Pleurodeles waltl). The cellular dynamics, tissue morphology and organ function during lung regeneration were examined and the Yap mutants were produced with CRISPR tools. We found that salamander switches the regenerative strategies from morphological replication through the blastema formation to compensatory growth via resident epithelial cells proliferation upon pulmonary resection injury as it transitions beyond metamorphosis. The larval animals achieve lung regeneration by forming a transient blastema-like structure and regrowing full-sized developing lungs, albeit unventilated. The adults repair injured lungs via massive proliferating epithelial cells and by expanding the existing alveolar epithelium without neo-alveolarization. Yap signalling promotes epithelial cell proliferation and prevents epithelial-to-mesenchymal transition to restore functional respiration. The salamanders have evolved distinct regenerative strategies for lung repair during different phases of life. Our results demonstrate a novel strategy for functional lung recovery by inducing epithelial cell proliferation to strengthen the remaining alveoli without rebuilding new alveoli.


Assuntos
Lesão Pulmonar , Urodelos , Animais , Urodelos/fisiologia , Pulmão/fisiologia , Células Epiteliais , Transdução de Sinais
3.
ACS Omega ; 8(51): 49046-49056, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162776

RESUMO

Organic-rich shale oil reservoirs with low-medium maturity have attracted increasing attention because of their enormous oil and gas potential. In this work, a series of experiments on pyrolysis of the particle and core samples were carried out in a self-made supercritical water pyrolysis apparatus to evaluate the feasibility and benefits of supercritical water in promoting the transformation efficiency and oil yield of the low-medium maturity organic-rich shale. Core samples had a mass loss of 8.4% under supercritical water pyrolysis, and many microcracks were generated, which increased the pyrolysis efficiency substantially. The oil yield of shale pyrolysis could reach 72.40% under supercritical water conditions at 23 MPa and 400 °C, which was 53.02% higher than that under anhydrous conditions. In supercritical water conditions, oxygen-containing compounds are less abundant than in anhydrous conditions, suggesting that supercritical water can inhibit their formation. Also, supercritical water conditions produced higher yields for light fraction, medium fraction, and heavy fraction shale oil than those under anhydrous conditions. These results indicate that supercritical water pyrolysis is feasible and has excellent advantages for low-medium maturity organic-rich shale.

4.
Clin Appl Thromb Hemost ; 24(7): 1067-1072, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29552916

RESUMO

Thrombolysis and anticoagulation were the main treatment methods for acute pulmonary embolism. However, the use of thrombolysis drugs may lead to bleeding complications. We compared intermittent low-dose urokinase (UK) and alteplase (recombinant tissue plasminogen activator [rt-PA]) in normotensive patients with intermediate-high-risk pulmonary embolism. The UK group was treated with intravenous UK 10 000 U/kg once a day for 7 days. The rt-PA group was given alteplase 50 mg by intravenous injection within 2 hours of admission. After thrombolytic therapy, 48 patients were included in this trial. Compared with before treatment, right and left ventricular diastolic diameter ratio, systolic pulmonary artery pressure, and cardiac troponin I of the 2 groups all significantly decreased 8 and 14 days after treatment, which indicated that right heart function improved. Total efficacy rates for the UK group 8 and 14 days after treatment (79.2%, 87.5%) and the rt-PA group (75.0%, 91.67%) were not significantly different. Adverse bleeding reactions were higher in the rt-PA group (20.8%) than in the UK group (8.3%). This pilot study indicates that intermittent low-dose UK thrombolysis is equally effective as rt-PA. However, future large-scale studies must also determine whether small doses of UK thrombolysis reduce the risk of bleeding.


Assuntos
Embolia Pulmonar/terapia , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico , Idoso , Feminino , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos , Embolia Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA