Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(4): 1723-1734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38084471

RESUMO

PURPOSE: Testing an RF coil prototype on subjects involves laborious verifications to ensure its safety. In particular, it requires preliminary electromagnetic simulations and their validations on phantoms to accurately predict the specific absorption rate (SAR). For coil design validation with a simpler safety procedure, the restricted SAR (rS) mode is proposed, enabling representative first experiments in vivo. The goal of the developed approach is to accelerate the transition of a custom coil system from prototype to clinical use. METHODS: The restricted specific absorption rate (SAR) (rS) mode imposes a radical limitation on the transmitted RF power based on a worst-case scenario of local RF power absorption. The limitations used are independent of the SAR spatial distribution, making this approach unconditionally safe. The developed rS protocol contains the sequences required for coil evaluation and satisfies the imposed rS conditions. It provides a quantitative characterization of the coil transmission and reception profiles and a qualitative evaluation of the anatomical images. Protocol validation was performed on commercial and pre-industrial prototype coils on a small cohort of healthy volunteers. RESULTS: The proposed rS protocol enables coil evaluation within an acquisition time compatible with common clinical protocol duration. The total time of all evaluation steps does not exceed 17 min. At the same time, the global SAR remains 100 times less than the International Electrotechnical Commission safety limit for played sequences. CONCLUSION: The rS protocol allows characterizing and comparing coil prototypes on volunteers without extensive electromagnetic calculations and phantom validations in an unconditionally safe way.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
2.
Magn Reson Med ; 91(3): 1254-1267, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37986237

RESUMO

PURPOSE: We propose a comprehensive workflow to design and build fully customized dense receive arrays for MRI, providing prediction of SNR and g-factor. Combined with additive manufacturing, this method allows an efficient implementation for any arbitrary loop configuration. To demonstrate the methodology, an innovative two-layer, 32-channel receive array is proposed. METHODS: The design workflow is based on numerical simulations using a commercial 3D electromagnetic software associated with circuit model co-simulations to provide the most accurate results in an efficient time. A model to compute the noise covariance matrix from circuit model scattering parameters is proposed. A 32-channel receive array at 7 T is simulated and fabricated with a two-layer design made of non-geometrically decoupled loops. Decoupling between loops is achieved using home-built direct high-impedance preamplifiers. The loops are 3D-printed with a new additive manufacturing technique to speed up integration while preserving the detailed geometry as simulated. The SNR and parallel-imaging performances of the proposed design are compared with a commercial coil, and in vivo images are acquired. RESULTS: The comparison of SNR and g-factors showed a good agreement between simulations and measurements. Experimental values are comparable with the ones measured on the commercial coil. Preliminary in vivo images also ensured the absence of any unexpected artifacts. CONCLUSION: A new design and performance analysis workflow is proposed and tested with a non-conventional 32-channel prototype at 7 T. Additive manufacturing of dense arrays of loops for brain imaging at ultrahigh field is validated for clinical use.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Imagens de Fantasmas , Desenho de Equipamento , Razão Sinal-Ruído , Imageamento por Ressonância Magnética/métodos , Fenômenos Eletromagnéticos , Encéfalo/diagnóstico por imagem
3.
Inorg Chem ; 62(48): 19612-19621, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044826

RESUMO

Thanks to their high initial electrochemical properties and broad compositional flexibility, lithium-rich disordered rocksalt cathode-active materials including high-performance manganese-only materials appear as a potential replacement to the cobalt-based current market leader "NMC" material. The main issue with these materials is their lack of stability. However, recent works have identified bulk fluorination as a potential solution to stabilize these compounds. There is, however, a clear lack of diversity in fluorination agents used to synthesize these disordered rocksalts, as most publications used LiF, a very stable compound. To achieve manganese-only materials, manganese oxyfluorides represent promising precursors, but the literature reports only MnO3F and Mn2O2F9, which are both unstable and hazardous. The present study develops several strategies for synthesis and a tailored characterization methodology to explore the chemical space of direct fluorination of manganese oxide MnO with molecular fluorine and shows how to tune its reactivity to achieve a range of novel, safe, and finely tunable manganese oxyfluorides of general formula MnOFx, with x going from 0 to 1 synthesized via a fluorine insertion mechanism.

4.
NMR Biomed ; 33(11): e4397, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32865259

RESUMO

In this paper we address the possibility to perform imaging of two samples within the same acquisition time using coupled ceramic resonators and one transmit/receive channel. We theoretically and experimentally compare the operation of our ceramic dual-resonator probe with a wire-wound solenoid probe, which is the standard probe used in ultrahigh-field magnetic resonance microscopy. We show that due to the low-loss ceramics used to fabricate the resonators, and a favorable distribution of the electric field within the conducting sample, a dual probe, which contains two samples, achieves an SNR enhancement by a factor close to the square root of 2 compared with a solenoid optimized for one sample.


Assuntos
Cerâmica/química , Imageamento por Ressonância Magnética/instrumentação , Microscopia/instrumentação , Campos Eletromagnéticos , Análise Numérica Assistida por Computador , Folhas de Planta/anatomia & histologia , Razão Sinal-Ruído
5.
Inorg Chem ; 59(3): 1602-1610, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31829569

RESUMO

Understanding and controlling confined nanospace to accommodate substrates and promote high ion conduction are essential to various fields. Layered double hydroxides (LDHs) have emerged as promising candidates for anion exchangers using the interlayer nanospace in their crystal structures. Miyata reported in 1983 that the affinity of anions for intercalation with most major Mg-Al LDHs increased in the following order: NO3- < Br- < F- < SO42- < HPO32-. Attempts to alter the affinity with different metal cations (M2+ and M3+) have been unsuccessful. Analyses of the crystalline structures of LDHs, positively charged host layers, interlayer anions, and interlayer water molecules indicate that they inevitably interact through hydrogen bonding. In other words, the affinity of LDHs for anions is controlled by tuning the hydrogen bonding. In this study, we prepared fluorine-substituted LDHs (F-LDHs) with different Mg/Al ratios by partially replacing the OH structural groups, which originated from the host layer, with fluorine atoms; the resulting change in affinity was investigated. The distribution coefficient, which is a useful indicator of the affinity of an LDH for a particular anion, was examined. The results showed that only F-LDHs with Mg/Al ratios of 3.5 exhibited high affinity, especially for NO3- ions, and the affinity increased in the following order: HPO42- < SO42- < F- < Br- < NO3-. The separation factors of these specific F-LDHs with respect to both NO3-/F- and NO3-/SO42- were higher than that of LDHs with other compositions by 1 order of magnitude. Raman spectroscopy above 3000 cm-1 revealed that the fluorine substitution of LDHs significantly changed the hydrogen bonding nature in the interlayer space. Highly electronegative fluorine atoms significantly decrease the extent of hydrogen bonding interactions between OH structural groups and both interlayer water molecules and anions, wherein steric effects are induced by the shrunken interlayer space, and van der Waals forces are revealed to be the predominant interaction with anions. Therefore, the highest affinity was observed for NO3- ions in F-LDHs.

6.
Proc Natl Acad Sci U S A ; 114(28): 7250-7253, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652341

RESUMO

Long-range acoustic communication is crucial to underwater applications such as collection of scientific data from benthic stations, ocean geology, and remote control of off-shore industrial activities. However, the transmission rate of acoustic communication is always limited by the narrow-frequency bandwidth of the acoustic waves because of the large attenuation for high-frequency sound in water. Here, we demonstrate a high-throughput communication approach using the orbital angular momentum (OAM) of acoustic vortex beams with one order enhancement of the data transmission rate at a single frequency. The topological charges of OAM provide intrinsically orthogonal channels, offering a unique ability to multiplex data transmission within a single acoustic beam generated by a transducer array, drastically increasing the information channels and capacity of acoustic communication. A high spectral efficiency of 8.0 ± 0.4 (bit/s)/Hz in acoustic communication has been achieved using topological charges between -4 and +4 without applying other communication modulation techniques. Such OAM is a completely independent degree of freedom which can be readily integrated with other state-of-the-art communication modulation techniques like quadrature amplitude modulation (QAM) and phase-shift keying (PSK). Information multiplexing through OAM opens a dimension for acoustic communication, providing a data transmission rate that is critical for underwater applications.

7.
NMR Biomed ; 32(5): e4079, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773725

RESUMO

Earlier work on RF metasurfaces for preclinical MRI has targeted applications such as whole-body imaging and dual-frequency coils. In these studies, a nonresonant loop was used to induce currents into a metasurface that was operated as a passive inductively powered resonator. However, as we show in this study, the strategy of using a resonant metasurface reduces the impact of the loop on the global performance of the assembled coil. To mitigate this deficiency, we developed a new approach that relies on the combination of a commercial surface coil and a coupled-wire structure operated away from its resonance. This strategy enables the extension of the sensitive volume of the surface coil while maintaining its local high sensitivity without any hardware modification. A wireless coil based on a two parallel coupled-wire structure was designed and electromagnetic field simulations were carried out with different levels of matching and coupling between both components of the coil. For experimental characterization, a prototype was built and tested at two frequencies, 300 MHz for 1 H and 282.6 MHz for 19 F at 7 T. Phantom and in vivo MRI experiments were conducted in different configurations to study signal and noise figures of the structure. The results showed that the proposed strategy improves the overall sensitive volume while simultaneously maintaining a high signal-to-noise ratio (SNR). Metasurfaces based on coupled wires are therefore shown here as promising and versatile elements in the MRI RF chain, as they allow customized adjustment of the sensitive volume as a function of SNR yield. In addition, they can be easily adapted to different Larmor frequencies without loss of performance.


Assuntos
Imageamento por Ressonância Magnética , Tecnologia sem Fio , Animais , Flúor/química , Camundongos Endogâmicos C57BL , Análise Numérica Assistida por Computador , Imagens de Fantasmas , Razão Sinal-Ruído
8.
Nat Mater ; 16(8): 808-813, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28628124

RESUMO

Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.

10.
Mol Cell Proteomics ; 14(3): 771-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25505153

RESUMO

The analysis and management of MS data, especially those generated by data independent MS acquisition, exemplified by SWATH-MS, pose significant challenges for proteomics bioinformatics. The large size and vast amount of information inherent to these data sets need to be properly structured to enable an efficient and straightforward extraction of the signals used to identify specific target peptides. Standard XML based formats are not well suited to large MS data files, for example, those generated by SWATH-MS, and compromise high-throughput data processing and storing. We developed mzDB, an efficient file format for large MS data sets. It relies on the SQLite software library and consists of a standardized and portable server-less single-file database. An optimized 3D indexing approach is adopted, where the LC-MS coordinates (retention time and m/z), along with the precursor m/z for SWATH-MS data, are used to query the database for data extraction. In comparison with XML formats, mzDB saves ∼25% of storage space and improves access times by a factor of twofold up to even 2000-fold, depending on the particular data access. Similarly, mzDB shows also slightly to significantly lower access times in comparison with other formats like mz5. Both C++ and Java implementations, converting raw or XML formats to mzDB and providing access methods, will be released under permissive license. mzDB can be easily accessed by the SQLite C library and its drivers for all major languages, and browsed with existing dedicated GUIs. The mzDB described here can boost existing mass spectrometry data analysis pipelines, offering unprecedented performance in terms of efficiency, portability, compactness, and flexibility.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Espectrometria de Massas/métodos , Conjuntos de Dados como Assunto , Células Epiteliais/metabolismo , Humanos , Proteoma/análise
11.
Phys Rev Lett ; 117(7): 074301, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563967

RESUMO

A recent theoretical breakthrough has brought a new tool, called the localization landscape, for predicting the localization regions of vibration modes in complex or disordered systems. Here, we report on the first experiment which measures the localization landscape and demonstrates its predictive power. Holographic measurement of the static deformation under uniform load of a thin plate with complex geometry provides direct access to the landscape function. When put in vibration, this system shows modes precisely confined within the subregions delineated by the landscape function. Also the maxima of this function match the measured eigenfrequencies, while the minima of the valley network gives the frequencies at which modes become extended. This approach fully characterizes the low frequency spectrum of a complex structure from a single static measurement. It paves the way for controlling and engineering eigenmodes in any vibratory system, especially where a structural or microscopic description is not accessible.

12.
Inorg Chem ; 55(23): 12185-12192, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934437

RESUMO

A new strontium uranyl oxyfluoride, [(UO2)4F13][Sr3(H2O)8](NO3)·H2O, was synthesized under hydrothermal conditions. The single-crystal X-ray structure was determined. This compound crystallizes in the triclinic space group P1̅ (No. 2), with unit cell parameters a = 10.7925(16) Å, b = 10.9183(16) Å, c = 13.231(2) Å, α = 92.570(8)°, ß = 109.147(8)°, γ = 92.778(8)°, V = 1468.1(4) Å3, and Z = 2. The structure is built from uranyl-containing [Formula: see text] chains of tetrameric units of corner-sharing UO2F5 pentagonal bipyramids. These chains are linked through trimeric strontium units to form strontium-uranyl oxyfluoride layers further assembled by nitrate groups. The interlayer space is occupied by free water molecules. This compound was characterized by spectroscopic methods, especially 19F NMR highlighting the many different fluoride sites. Structural relationships with other uranyl oxyfluorides were investigated through the different F/O ratios, the structural building unit, and the structural arrangement.

13.
Inorg Chem ; 53(2): 852-60, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24364744

RESUMO

Mixed-metal inorganic fluoride, Co0.60Fe0.40F3, solid solutions are obtained through topochemical reactions of Co2FeCl(OH)6·2H2O LDH with molecular fluorine, F2, at temperatures as low as 100 °C. This solid solution possesses interesting F(•)-releasing ability, and its efficiency as a solid-state fluorinating agent is demonstrated on a commercial polyethylene film. (19)F solid state NMR and contact angle measurements underline the efficient fluorination of this polymer.


Assuntos
Cobalto/química , Flúor/química , Halogenação , Hidróxidos/química , Ferro/química , Modelos Moleculares , Conformação Molecular
14.
Nanomaterials (Basel) ; 14(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38392760

RESUMO

More than 15 years ago, the study of nanodiamond (ND) powders as a material for designing reflectors of very cold neutrons (VCNs) and cold neutrons (CNs) began. Such reflectors can significantly increase the efficiency of using such neutrons and expand the scope of their application for solving applied and fundamental problems. This review considers the principle of operation of VCN and CN reflectors based on ND powders and their advantages. Information is presented on the performed experimental and theoretical studies of the effect of the size, structure, and composition of NDs on the efficiency of reflectors. Methods of chemical and mechanical treatments of powders in order to modify their chemical composition and structure are discussed. The aim is to avoid, or at least to decrease, the neutron inelastic scatterers and absorbers (mainly hydrogen atoms but also metallic impurities and nitrogen) as well as to enhance coherent elastic scattering (to destroy ND clusters and sp2 carbon shells on the ND surface that result from the preparation of NDs). Issues requiring further study are identified. They include deeper purification of NDs from impurities that can be activated in high radiation fluxes, the stability of NDs in high radiation fluxes, and upscaling methods for producing larger quantities of ND powders. Possible ways of solving these problems are proposed.

15.
Nanomaterials (Basel) ; 14(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38470735

RESUMO

Sub-fluorinated carbon nanofibers (F-CNFs) can be described as a non-fluorinated core surrounded by a fluorocarbon lattice. The core ensures the electron flux in the cathode during the electrochemical discharge in the primary lithium battery, which allows a high-power density to be reached. The ball-milling in an inert gas (Ar) of these F-CNFs adds a second level of conductive sp2 carbons, i.e., a dual sub-fluorination. The opening of the structure changes, from one initially similar multi-walled carbon nanotube to small lamellar nanoparticles after milling. The power densities are improved by the dual sub-fluorination, with values of 9693 W/kg (3192 W/kg for the starting material). Moreover, the over-potential of low depth of discharge, which is typical of covalent CFx, is suppressed thanks to the ball-milling. The energy density is still high during the ball-milling, i.e., 2011 and 2006 Wh/kg for raw and milled F-CNF, respectively.

16.
Dalton Trans ; 53(22): 9473-9481, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38767605

RESUMO

In order to prepare self-standing and flexible slow neutron reflectors made of graphite fluoride (GF) with high contents of (C2F)n structural phase, graphite foils of different thicknesses were used as starting materials for gas (F2)/solid fluorination. The maximal interlayer distance of GF was obtained with this phase thanks to the stacking sequence FCCF/FCCF; this is mandatory for the efficient reflection of slow neutrons. 71 and 77% of the (C2F)n phase were achieved for graphite foils with thicknesses of 1.0 and 0.1 mm, respectively. The interlayer distances were 8.6 Å as expected. The fluorination conditions (static mode, a long duration of 24 h, annealing in pure F2 gas for 24 h, and temperatures in the 390-460 °C range) were adapted to large pieces of graphite foils (7 × 7 cm2) in order to both avoid exfoliation and achieve a homogeneous dispersion of fluorine atoms. This process was also efficient for thinner (0.01 mm thick) graphitized graphene oxide foil. 56% of the (C2F)n phase and an interlayer of 8.6 Å were achieved for this foil when fluorination was performed at 430 °C. Whatever the nature and the thickness of the foil, their flexibilities are maintained.

17.
Dalton Trans ; 53(19): 8105-8111, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695771

RESUMO

Li(Ni0.80Co0.15Al0.05)O2 is a lithium-ion battery cathode, commercially available for more than twenty years, which is associated with high energy capacity and high energy density, with moderate power. Atomic layer fluorination (ALF) of Li(Ni0.80Co0.15Al0.05)O2 with XeF2 is performed to improve its cyclability. The ALF method aims at forming an efficient protecting fluorinated layer at the surface of the material, with a low fluorine content. Surface fluorinated Li(Ni0.80Co0.15Al0.05)O2 is characterized by X-ray diffraction, electron microscopy, 19F nuclear magnetic resonance, X-ray photoelectron spectroscopy, and galvanostatic measurements, and a fluorine content as low as 1.4 wt% is found. The presence of fluorine atoms improves the electrochemical performances of Li(Ni0.80Co0.15Al0.05)O2: cyclability, polarization and rate capability are improved. Operando infrared spectroscopy and post-mortem gas chromatography provide some insights into the origins of these improvements.

18.
Acta Chim Slov ; 60(3): 495-504, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24169703

RESUMO

Fluorination processes of polymer surfaces are able to lead to drastic modifications of the surface properties without changing the bulk characteristics of the virgin material. In this paper, two types of polymers, i.e. ultrahigh molecular weight polyethylene (UHMWPE) and high density polyethylene (HDPE), are considered. The surface of these materials have been modified using two different fluorination routes, both carried out at room temperature: the direct fluorination with 10% F2 + 90% He gaseous mixtures and the radio-frequency plasma-enhanced fluorination (PEF) using either O2/CF4 mixtures or c-C4F8. The effect of these processes on the surface of the polymer samples are compared using mostly XPS results. The different components of the C1s spectra are assigned in term of CFx bonding, giving valuable information on the surface fluorination rate.


Assuntos
Materiais Biocompatíveis/química , Polietileno/química , Polietilenos/química , Células Cultivadas , Halogenação , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
19.
J Clin Med ; 12(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37048756

RESUMO

In the era of minimally invasive surgery, the role of sublobar resection comprising anatomical segmentectomy and wide wedge excision remains controversial [...].

20.
Int J Pharm ; 643: 123254, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37473975

RESUMO

Medical devices (MD) are often made of plasticized polyvinylchloride (PVC). However, plasticizers may leach out into infused solutions and expose the patients to a toxic risk. The aim of the present work is to fluorinate plasticized PVC tubular MDs to create a barrier layer on their internal surface, and to study the impact of such a chemical treatment on the migration of the plasticizers. Following fluorination by pure molecular fluorine, the physico-chemical characterization of these modified MDs was carried out using various spectroscopic and microscopic techniques or tensile tests, evidencing the formation of covalent C-F bonds on the surface of the treated samples without modification of their mechanical and optical properties. The migration of plasticizers from fluorinated MDs was assessed using gas chromatography coupled with mass spectrometry and was found considerably decreased in comparison with the pristine MDs. After 24 h, the amount of tri-octyltrimellitate plasticizer (TOTM) detected in migrates from fluorinated MDs was even lower than the limit of quantification. Complementary cytotoxicity assays were performed according to the ISO EN 10993-5 standard, showing that the new fluorinated material does not cause a cytotoxic effect on L929 cells.


Assuntos
Dietilexilftalato , Plastificantes , Humanos , Plastificantes/química , Halogenação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cloreto de Polivinila/química , Espectrometria de Massas , Dietilexilftalato/toxicidade , Dietilexilftalato/análise , Dietilexilftalato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA