Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Res ; 236(Pt 2): 116858, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562740

RESUMO

Micro (nano)plastics (MNPs) are pollutants of worldwide concern for their ubiquitous environmental presence and associated impacts. The higher consumption of MNPs contaminated commercial food can cause potential adverse human health effects. This review highlights the evidence of MNPs in commercial food items and summarizes different sampling, extraction, and digestion techniques for the isolation of MNPs, such as oxidizing digestion, enzymatic digestion, alkaline digestion and acidic digestion. Various methods for the characterization and quantification of microplastics (MPs) are also compared, including µ-Raman spectroscopy, µ-Fourier transform infrared spectroscopy (FTIR), thermal analysis and Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). Finally, we share our concerns about the risks of MNPs to human health through the consumption of commercial seafood. The knowledge of the potential human health impacts at a subcellular or molecular level of consuming mariculture products contaminated with MNPs is still limited. Moreover, MNPs are somewhat limited, hard to measure, and still contentious. Due to the nutritional significance of fish consumption, the risk of exposure to MNPs and the associated health effects are of the utmost importance.

2.
Ecotoxicol Environ Saf ; 249: 114362, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508795

RESUMO

The extensive use of organochlorine pesticides (OCPs) has resulted in the widespread contamination of different environmental matrices in Pakistan. Freshwater bodies are also prone to OCPs contamination as they receive agricultural and industrial runoff from different sources. In the present study, the data regarding OCPs' fate and distribution in freshwater resources of Pakistan was reviewed and associated risks to human and ecological health were assessed. Among all the OCPs, DDTs were more prevalent with the highest mean concentration of 2290 ng/L observed in River Ravi (Lahore and Sahiwal District). Human health risk assessment showed a higher risk to the children with high Hazard Quotient (HQ) values ranging between 4.1 × 10-9- 295 for Aldrin. The River Ravi (Lahore and Sahiwal District), the River Sutlej (Kasur & Bahawalpur District), and the River Kabul (Nowshehra District) were categorized as high-risk water bodies based on Hazard Index (HI) and Non-Cancer Risk (CRI) index values > 10. Ecological risk assessment revealed a higher risk posed to invertebrate species from DDT exposure. In summary, this review highlights the occurrence and distribution of OCPs and their associated human health and ecological risks in freshwater bodies of Pakistan and also contributes to signifying the need for proper management and regulation of banned pesticides and future research perspectives.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Criança , Humanos , Paquistão , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Praguicidas/toxicidade , Praguicidas/análise , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Medição de Risco , Rios , China
3.
Int J Med Sci ; 19(14): 2071-2079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483593

RESUMO

Glioma, a kind of central nervous system (CNS) tumor, is hard to cure and accounts for 32% of all CNS tumors. Establishing a stable glioma model is critically important to investigate the underlying molecular mechanisms involved in tumorigenesis and tumor progression. Various core signaling pathways have been identified in gliomagenesis, such as RTK/RAS/PI3K, TP53, and RB1. Traditional methods of establishing glioma animal models have included chemical induction, xenotransplantation, and genetic modifications (RCAS/t-va system, Cre-loxP, and TALENs). Recently, CRISPR/Cas9 has emerged as an efficient gene editing tool with high germline transmission and has extended the scope of stable and efficient glioma models that can be generated. Therefore, this review will highlight the documented evidence about the molecular characteristics, critical genetic markers, and signaling pathways responsible for gliomagenesis and progression. Moreover, methods of establishing glioma models using gene editing techniques and therapeutic aspects will be discussed. Finally, the prospect of applying gene editing in glioma by using CRISPR/Cas9 strategy and future research directions to establish a stable glioma model are also included in this review. In-depth knowledge of glioma signaling pathways and use of CRISPR/Cas9 can greatly assist in the development of a stable, efficient, and spontaneous glioma model, which can ultimately improve the effectiveness of therapeutic responses and cure glioma patients.


Assuntos
Neoplasias , Humanos
4.
Sci Total Environ ; 929: 172414, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631624

RESUMO

The integration of recombinase polymerase amplification (RPA) with CRISPR/Cas technology has revolutionized molecular diagnostics and pathogen detection due to its unparalleled sensitivity and trans-cleavage ability. However, its potential in the ecological and environmental monitoring scenarios for aquatic ecosystems remains largely unexplored, particularly in accurate qualitative/quantitative detection, and its actual performance in handling complex real environmental samples. Using zooplankton as a model, we have successfully optimized the RPA-CRISPR/Cas12a fluorescence detection platform (RPA-Cas-FQ), providing several crucial "technical tips". Our findings indicate the sensitivity of CRISPR/Cas12a alone is 5 × 109 copies/reaction, which can be dramatically increased to 5 copies/reaction when combined with RPA. The optimized RPA-Cas-FQ enables reliable qualitative and semi-quantitative detection within 50 min, and exhibits a good linear relationship between fluorescence intensity and DNA concentration (R2 = 0.956-0.974***). Additionally, we developed a rapid and straightforward identification procedure for single zooplankton by incorporating heat-lysis and DNA-barcode techniques. We evaluated the platform's effectiveness using real environmental DNA (eDNA) samples from the Three Gorges Reservoir, confirming its practicality. The eDNA-RPA-Cas-FQ demonstrated strong consistency (Kappa = 0.43***) with eDNA-Metabarcoding in detecting species presence/absence in the reservoir. Furthermore, the two semi-quantitative eDNA technologies showed a strong positive correlation (R2 = 0.58-0.87***). This platform also has the potential to monitor environmental pollutants by selecting appropriate indicator species. The novel insights and methodologies presented in this study represent a significant advancement in meeting the complex needs of aquatic ecosystem protection and monitoring.


Assuntos
Monitoramento Ambiental , Zooplâncton , Monitoramento Ambiental/métodos , Animais , Sistemas CRISPR-Cas , DNA Ambiental/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/metabolismo
5.
J Hazard Mater ; 480: 136030, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362123

RESUMO

Rising glbal population and plastic consumption have caused a dramatic increase in plastic waste, leading to micro- and nanoplastic ingestion by aquatic organisms and subsequent bioaccumulation in their tissues. This transfer to higher trophic levels raises nanoplastic concentrations and bioavailability, potentially harming organisms' health and development. This poses a risk to human health via seafood. To address these issues, this study assesses the toxicological impacts of nanoplastics (NPs) on brine shrimp (Artemia franciscana) and their trophic transfer to zebrafish. The research unveiled concentration-dependent bioaccumulation of NPs in zebrafish and Artemia franciscana (A. franciscana). Polystyrene nanoplastics (PS-NPs) exhibited higher accumulation in A. franciscana whereas PP-NPs showed greater accumulation in zebrafish gut. Histopathological analysis under PS-NPs exposure revealed significant tissue alterations, indicative of inflammatory responses and impaired mucosal barrier integrity. Gene expression analyses confirmed these findings, showing activation of the P38-MAPK pathway by PS-NPs, which correlated with increased inflammatory cytokines. Additionally, PE-NPs activated the JNK-MAPK pathway, while PP-NPs exposure triggered the NOD-like receptor signaling pathway. Moreover, the composition of gut microbiota shifted to a dysbiotic state, characterized by an increase in pathogenic bacteria in the PS-NPs and PP-NPs groups, elevating the risk of developing Inflammatory Bowel Disease (IBD). PS-NPs were regarded as the most toxic due to their lower stability and higher aggregation tendencies, followed by PP-NPs and PE-NPs. Taken together, the overall study highlighted the complex interactions between NPs, gut microbiota, and host health, emphasizing the importance of thoroughly assessing the ecological and physiological impacts of nanoplastic pollution.

6.
Aquat Toxicol ; 242: 106040, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34856459

RESUMO

Pharmaceuticals and personal care products (PPCPs) as emerging contaminants are ubiquitously present in the aquatic environment. Using in vivo and in silico techniques, this study aims to elucidate tissue distribution and endocrine disruption effects of chronic exposure (120 days) to PPCP mixture at environmentally relevant concentrations (ERCs) in adult zebrafish. Results from UHPLC-MS/MS analyses showed elevated distribution of PPCPs in zebrafish tissues in the order of liver > gonad > brain. Upregulation of steroid hormone receptors, both gonadotropin, and steroidogenic genes perturb the HPG axis pathway in females, while male fish exhibited significantly downregulated expressions of vtg, cyp17, and 17ßhsd genes with inhibited fecundity. The Spearman correlation indicated a significant positive relationship between PPCPs bioaccumulation and mRNA levels of HPG axis genes. In silico molecular docking (MD) revealed specific amino acid residues of PPCPs binding with zebrafish estrogen receptors. Furthermore, the strongest binding energies of sulfamethoxazole, carbamazepine, and triclosan were discovered in erα and erß estrogen receptors, confirming PPCPs' xenoestrogenic behavior. To summarize, chronic exposure to ERCs resulted in a high accumulation of PPCPs in the liver and gonad tissues of adult zebrafish, as well as associated perturbed genetic responses. As a result, strict environmental regulations for the disposal of PPCPs should be ensured to protect ecological and public health.


Assuntos
Cosméticos , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Cosméticos/toxicidade , Monitoramento Ambiental , Feminino , Masculino , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Distribuição Tecidual , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
7.
Sci Total Environ ; 838(Pt 2): 156048, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35597342

RESUMO

Staphylococcus aureus (S. aureus) is an important opportunistic human and animal pathogen that can cause a wide diversity of infections. Due to its environmental health risks, it is crucial to establish a time-saving, high-throughput, and highly sensitive technique for water quality surveillance. In this study, we developed a novel method to detect S. aureus in the water environment based on recombinase polymerase amplification (RPA) and CRISPR/Cas12a. This method utilizes isothermal amplification of nucleic acids and the trans-cleavage activity of the CRISPR/Cas12a system to generate fluorescence signals with a single-stranded DNA-fluorophore-quencher (ssDNA-FQ) reporter and a naked-eye detected lateral flow assay (LFA). Our RPA-CRISPR/Cas12a detection system can reduce the detection time to 35 min and enhance the high-throughput detection threshold to ≥5 copies of pathogen DNA, which is more sensitive than that of reported. Moreover, in the lower reaches of the Jialing River in Chongqing, China, 10 water samples from the mainstream and 7 ones from tributaries were successfully monitored S. aureus for less than 35 min using RPA-CRISPR/Cas12a detection system. Taken together, a novel high-throughput RPA-CRISPR detection was established and firstly applied for sensitively monitoring S. aureus in the natural water environment.


Assuntos
Recombinases , Infecções Estafilocócicas , Animais , Sistemas CRISPR-Cas , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/genética , Staphylococcus aureus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA