Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 29(38): 385203, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-29949523

RESUMO

Owing to the capability of integrating the information storage and computing in the same physical location, in-memory computing with memristors has become a research hotspot as a promising route for non von Neumann architecture. However, it is still a challenge to develop high performance devices as well as optimized logic methodologies to realize energy-efficient computing. Herein, filamentary Cu/GeTe/TiN memristor is reported to show satisfactory properties with nanosecond switching speed (<60 ns), low voltage operation (<2 V), high endurance (>104 cycles) and good retention (>104 s @85 °C). It is revealed that the charge carrier conduction mechanisms in high resistance and low resistance states are Schottky emission and hopping transport between the adjacent Cu clusters, respectively, based on the analysis of current-voltage behaviors and resistance-temperature characteristics. An intuitive picture is given to describe the dynamic processes of resistive switching. Moreover, based on the basic material implication (IMP) logic circuit, we proposed a reconfigurable logic method and experimentally implemented IMP, NOT, OR, and COPY logic functions. Design of a one-bit full adder with reduction in computational sequences and its validation in simulation further demonstrate the potential practical application. The results provide important progress towards understanding of resistive switching mechanism and realization of energy-efficient in-memory computing architecture.

2.
Plant Cell Environ ; 37(12): 2754-67, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24905016

RESUMO

ß-Amylase (BAM) catalyses starch breakdown to generate maltose, which can be incorporated into sugar metabolism. However, the role of BAM genes in cold tolerance is less characterized. In this study, we report the isolation and functional characterization of a chloroplast-localizing BAM-encoding gene PtrBAM1 from Poncirus trifoliata. PtrBAM1 was induced by cold, dehydration and salt, but repressed by maltose. Overexpression of PtrBAM1 in tobacco (Nicotiana nudicaulis) increased BAM activity, promoted starch degradation and enhanced the contents of maltose and soluble sugars, whereas opposite changes were observed when PtrBAM1 homolog in lemon (Citrus lemon) was knocked down. The tobacco overexpressing lines exhibited enhanced tolerance to cold at chilling or freezing temperatures. Under cold stress, higher BAM activity and greater accumulation of maltose and soluble sugars were observed in the overexpressing lines when compared with the wild-type or empty vector transformants. Bioinformatics analysis demonstrated that PtrBAM1 promoter contained a CBF-recognizing element. Yeast one-hybrid assay demonstrated that PtrCBF could interact with the promoter fragment containing the element. Taken together, these results demonstrate that PtrBAM1 is a member of CBF regulon and plays an important role in cold tolerance by modulating the levels of soluble sugars acting as osmolytes or antioxidants.


Assuntos
Adaptação Fisiológica/genética , Carboidratos/análise , Temperatura Baixa , Proteínas de Plantas/metabolismo , Poncirus/enzimologia , Poncirus/fisiologia , Regulon/genética , beta-Amilase/genética , Sequência de Aminoácidos , Eletrólitos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Malondialdeído/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Poncirus/genética , Poncirus/ultraestrutura , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Solubilidade , Amido/metabolismo , Frações Subcelulares/enzimologia , Nicotiana/genética , beta-Amilase/química , beta-Amilase/metabolismo
3.
Materials (Basel) ; 15(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35407828

RESUMO

Silicon carbide is an ideal material for advanced electronics, military, and aerospace applications due to its superior physical and chemical properties. In order to understand the effect of crystal anisotropy of 4H-SiC on its processability, nanoindentation and nanoscratch tests on various crystallographic planes and orientations were performed and the results outlined in this paper. The results show that the C-plane of 4H-SiC is more rigid, while the Si-plane is more elastic and ductile. Better surface quality may be obtained on the Si-plane in nanoscale abrasive machining. The maximum lateral force, maximum residual depth of the scratch, and maximum crack width on the C- and Si-planes of 4H-SiC are significantly periodic in crystallographic orientations at 30° intervals. The scratch along the <112¯0> direction is more prone to crack expansion, and better machined surface quality is easy to obtain along the <101¯0> directions of C- and Si-planes.

4.
Nanoscale ; 11(38): 17590-17599, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31461106

RESUMO

The practical application of optoelectronic artificial synapses in neuromorphic visual systems is still hindered by their limited functionality, reliability and the challenge of mass production. Here, an electro-photo-sensitive synapse based on a highly reliable amorphous InGaZnO thin-film transistor is demonstrated. Not only does the synapse respond to electrical voltage spikes due to charge trapping/detrapping, but also the weight is modified directly by persistent photocurrent effects under UV-light stimulation. Representative forms of synaptic plasticity, including inhibitory and excitatory postsynaptic currents, frequency-dependent characteristics, short-term to long-term plasticity transitions, and summation effects, are successfully demonstrated. In particular, optoelectronic synergetic modulation leads to reconfigurable excitatory and inhibitory synaptic behaviors, which provides a promising way to achieve the homeostatic regulation of synaptic weights. Moreover, the analogue channel conductance with 100 states is used as the weight update rule to perform MNIST handwritten digit recognition, using system-level LeNet-5 convolutional neural network simulations. The network shows a high recognition accuracy of 95.99% and good tolerance to noisy input patterns. This study highlights the commercial potential of mature optoelectronic InGaZnO transistor technology in edge neuromorphic systems.

5.
ACS Appl Mater Interfaces ; 8(50): 34559-34567, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27998150

RESUMO

Nonvolatile stateful logic computing in memristors is a promising paradigm with which to realize the unity of information storage and processing in the same physical location that has shown great feasibility for breaking the von Neumann bottleneck in traditional computing architecture. How to reduce the computational complexity of memristor-based logic functions is a matter of concern. Here, based on a general logic expression, we proposed a method to implement the arbitrary logic of complete 16 Boolean logic in two steps with one memristor in the crossbar architecture. A representative functional complete NAND logic is successfully experimentally demonstrated in the filamentary Ag-AgGeTe-Ta memristors to prove the validity of our method. We believe our work may promote the development of the revolutionary logic in memory architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA