Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(5): 519-529, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346409

RESUMO

Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1f/f; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1f/f; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/patologia , Endorribonucleases/metabolismo , Macrófagos/fisiologia , Obesidade/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Diferenciação Celular/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Metabolismo Energético/genética , Humanos , Ativação de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
2.
J Lipid Res ; 64(11): 100449, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734559

RESUMO

Activation of brown adipose tissue (BAT) contributes to energy dissipation and metabolic health. Although mineralocorticoid receptor (MR) antagonists have been demonstrated to improve metabolism under obesity, the underlying mechanisms remain incompletely understood. We aimed to evaluate the role of BAT MR in metabolic regulation. After 8 weeks of high-fat diet (HFD) feeding, BAT MR KO (BMRKO) mice manifested significantly increased bodyweight, fat mass, serum fasting glucose, and impaired glucose homeostasis compared with littermate control (LC) mice, although insulin resistance and fasting serum insulin were not significantly changed. Metabolic cage experiments showed no change in O2 consumption, CO2 production, or energy expenditure in obese BMRKO mice. RNA sequencing analysis revealed downregulation of genes related to fatty acid metabolism in BAT of BMRKO-HFD mice compared with LC-HFD mice. Moreover, H&E and immunohistochemical staining demonstrated that BMRKO exacerbated HFD-induced macrophage infiltration and proinflammatory genes in epididymal white adipose tissue (eWAT). BMRKO-HFD mice also manifested significantly increased liver weights and hepatic lipid accumulation, an increasing trend of genes related to lipogenesis and lipid uptake, and significantly decreased genes related to lipolytic and fatty acid oxidation in the liver. Finally, the level of insulin-induced AKT phosphorylation was substantially blunted in eWAT but not liver or skeletal muscle of BMRKO-HFD mice compared with LC-HFD mice. These data suggest that BAT MR is required to maintain metabolic homeostasis, likely through its regulation of fatty acid metabolism in BAT and impacts on eWAT and liver.


Assuntos
Adipócitos Marrons , Metabolismo Energético , Receptores de Mineralocorticoides , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipídeos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Metabolismo Energético/genética
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(1): 1-6, 2023 Jan.
Artigo em Zh | MEDLINE | ID: mdl-36647635

RESUMO

As one of the most diverse microbial communities within the human body, the oral microbiome is an important component that contributes to the maintenance of human health. The microbial composition of different sites in the oral cavity varies significantly and a dynamic equilibrium is maintained through communications with the environment and oral and distal organs of the host. It has been reported that there is significant correlation between dysbiotic oral microbiome and the occurrence or progression of a variety of systemic diseases. In this review, we summarized recent advances in research on the relationship between oral microbiome and systemic health, focusing on the interaction and pathological mechanisms between oral microbiome and systemic health and hoping to provide new avenues for the early prevention and clinical diagnosis and treatment of systemic diseases.


Assuntos
Microbiota , Humanos , Boca , Disbiose
4.
J Mol Cell Cardiol ; 167: 40-51, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35314145

RESUMO

RATIONALE: Mineralocorticoid receptor (MR) antagonists have been clinically used to treat heart failure. However, the underlying cellular and molecular mechanisms remain incompletely understood. METHODS AND RESULTS: Using osteoblast MR knockout (MRobko) mouse in combination with myocardial infarction (MI) model, we demonstrated that MR deficiency in osteoblasts significantly improved cardiac function, promoted myocardial healing, as well as attenuated cardiac hypertrophy, fibrosis and inflammatory response after MI. Gene expression profiling using RNA sequencing revealed suppressed expression of osteocalcin (OCN) in calvaria from MRobko mice compared to littermate control (MRfl/fl) mice with or without MI. Plasma levels of undercarboxylated OCN (ucOCN) were also markedly decreased in MRobko mice compared to MRfl/fl mice. Administration of ucOCN abolished the protective effects of osteoblast MR deficiency on infarcted hearts. Mechanistically, ucOCN treatment promoted proliferation and inflammatory cytokine secretion in macrophages. Spironolactone, an MR antagonist, significantly inhibited the expression and secretion of OCN in post-MI mice. More importantly, spironolactone decreased plasma levels of ucOCN and inflammatory cytokines in heart failure patients. CONCLUSIONS: MR deficiency in osteoblasts alleviates pathological ventricular remodeling after MI, likely through its regulation on OCN. Spironolactone may work through osteoblast MR/OCN axis to exert its therapeutic effects on pathological ventricular remodeling and heart failure in mice and human patients.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Humanos , Camundongos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Infarto do Miocárdio/patologia , Osteoblastos/metabolismo , Espironolactona , Remodelação Ventricular
5.
Immunology ; 167(1): 94-104, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751882

RESUMO

Mineralocorticoid receptor (MR) is a classic nuclear receptor and an effective drug target in the cardiovascular system. The function of MR in immune cells such as macrophages and T cells has been increasingly appreciated. The aim of this study was to investigate the function of Treg MR in the process of inflammatory bowel disease (IBD). We treated Treg MR-deficient (MRflox/flox Foxp3YFP-Cre , KO) mice and control (Foxp3YFP-Cre , WT) mice with dextran sodium sulphate (DSS) to induce colitis and found that the severity of DSS-induced colitis was markedly alleviated in Treg MR-deficient mice, accompanied by reduced production of inflammatory cytokines, and relieved infiltration of monocytes, neutrophils and interferon γ+ T cells in colon lamina propria. Faecal microbiota of mice with colitis was analysed by 16S rRNA gene sequencing and the composition of gut microbiota was vastly changed in Treg MR-deficient mice. Furthermore, depletion of gut microbiota by antibiotics abolished the protective effects of Treg MR deficiency and resulted in similar severity of DSS-induced colitis in WT and KO mice. Faecal microbiota transplantation from KO mice attenuated DSS-induced colitis characterized by alleviated inflammatory infiltration compared to that from WT mice. Hence, our study demonstrates that Treg MR deficiency protects against DSS-induced colitis by attenuation of colonic inflammatory infiltration. Gut microbiota is both sufficient and necessary for Treg MR deficiency to exert the beneficial effects.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/terapia , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Receptores de Mineralocorticoides/genética , Linfócitos T Reguladores
6.
J Clin Periodontol ; 49(10): 1067-1078, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35713233

RESUMO

AIM: Periodontitis (PD) is the sixth most prevalent disease around the world and is involved in the development and progression of multiple systemic diseases. Previous studies have reported that PD may aggravate liver injuries. The objective of this study was to investigate whether and how PD affects liver fibrosis. MATERIALS AND METHODS: Ligature-induced PD (LIP) was induced in male C57/B6J mice, and sub-gingival plaques (PL) from patients with PD were applied to mouse teeth. Liver fibrosis was induced by carbon tetrachloride (CCl4 ) injection. The mice were randomly divided into six groups: Oil, Oil+LIP, Oil+LIP+PL, CCl4 , CCl4 +LIP, and CCl4 +LIP+PL. Alveolar bone resorption was evaluated by methylene blue staining. Hepatic function was analysed by serum alanine aminotransferase and hepatic hydroxyproline. Picrosirius red and α-smooth muscle actin (SMA) staining were used to evaluate the fibrotic area. RNA sequencing and quantitative RT-PCR were used to measure gene expression. Western blotting was used to measure protein levels. Flow cytometry was used to analyse the accumulation of immune cells. Mouse microbiota were analysed using 16S rRNA gene sequencing. RESULTS: Mice in the CCl4 +LIP+PL group displayed higher serum alanine aminotransferase and hepatic hydroxyproline as well as more Picrosirius red-positive and α-SMA-positive areas in liver samples than those of the CCl4 group, suggesting that PD (LIP+PL) aggravated CCl4 -induced hepatic dysfunction and liver fibrosis. Consistently, the expression of fibro-genic genes and the protein levels of transforming growth factor ß were much higher in the CCl4 +LIP+PL group than in the CCl4 group. Flow cytometry revealed that PD increased the accumulation of immune cells, including Kupffer cells, B cells, and Th17 cells, in the liver of mice with CCl4 treatment. PD also increased the expression of inflammatory genes and activated pro-inflammatory nuclear factor-kappa B pathway in the livers of CCl4 -injected mice. Moreover, PD altered both oral and liver microbiota in CCl4 -injected mice. CONCLUSIONS: PD aggravates CCl4 -induced hepatic dysfunction and fibrosis in mice, likely through the increase of inflammation and alteration of microbiota in the liver.


Assuntos
Cirrose Hepática , Microbiota , Periodontite , Actinas , Alanina Transaminase , Animais , Compostos Azo , Tetracloreto de Carbono/efeitos adversos , Hidroxiprolina/metabolismo , Cirrose Hepática/induzido quimicamente , Masculino , Azul de Metileno , Camundongos , Periodontite/complicações , RNA Ribossômico 16S , Fator de Crescimento Transformador beta/metabolismo
7.
Oral Dis ; 28(2): 521-528, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33382150

RESUMO

OBJECTIVES: To assess the effects of periodontitis on renal interstitial fibrosis in a mouse model. MATERIALS AND METHODS: Thirty C57BL/6 male mice were divided into control, periodontitis (PD), unilateral ureteral ligation (UUO) and PD+UUO groups. Unilateral ureteral ligation was performed 6 days after periodontitis. After 2 weeks, all mice were sacrificed, and samples were collected for the assessment of gene expression, immune cells, biochemical indicators and renal pathology. RESULTS: Expression of tumour necrosis factor-α, interleukin-1ß, and Ly6G in the kidneys in the PD+UUO group was significantly greater than in the UUO group. The percentage of CD11b+ Ly6G+ cells was significantly higher in the PD+UUO than in the UUO group. Fibrotic areas in the kidneys in the PD+UUO group were slightly, but not significantly, greater than those in the UUO group. Kidneys from the PD+UUO group showed markedly higher gene expression of matrix metalloproteinase-9, but not α-smooth muscle actin or collagen I, than those in the UUO group. There were no significant differences in blood urea nitrogen, serum creatinine and uric acid between the PD+UUO and UUO groups. CONCLUSIONS: Periodontitis increases the renal inflammatory response without showing a significant influence on renal interstitial fibrosis or renal function in the UUO mouse model.


Assuntos
Periodontite , Obstrução Ureteral , Animais , Modelos Animais de Doenças , Fibrose , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Periodontite/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
8.
Circulation ; 141(8): 655-666, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31893939

RESUMO

BACKGROUND: Blood pressure often rises with aging, but exact mechanisms are still not completely understood. With aging, the level of proinflammatory cytokines increases in T lymphocytes. Prostaglandin D2, a proresolution mediator, suppresses Type 1 T helper (Th1) cytokines through D-prostanoid receptor 1 (DP1). In this study, we aimed to investigate the role of the prostaglandin D2/DP1 axis in T cells on age-related hypertension. METHODS: To clarify the physiological and pathophysiological roles of DP1 in T cells with aging, peripheral blood samples were collected from young and older male participants, and CD4+ T cells were sorted for gene expression, prostaglandin production, and Western blot assays. Mice blood pressure was quantified by invasive telemetric monitor. RESULTS: The prostaglandin D2/DP1 axis was downregulated in CD4+ T cells from older humans and aged mice. DP1 deletion in CD4+ T cells augmented age-related hypertension in aged male mice by enhancing Th1 cytokine secretion, vascular remodeling, CD4+ T cells infiltration, and superoxide production in vasculature and kidneys. Conversely, forced expression of exogenous DP1 in T cells retarded age-associated hypertension in mice by reducing Th1 cytokine secretion. Tumor necrosis factor α neutralization or interferon γ deletion ameliorated the age-related hypertension in DP1 deletion in CD4+ T cells mice. Mechanistically, DP1 inhibited Th1 activity via the PKA (protein kinase A)/p-Sp1 (phosphorylated specificity protein 1)/neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) pathway-mediated T-box-expressed-in-T-cells (T-bet) ubiquitination. T-bet deletion or forced NEDD4L expression in CD4+ T cells attenuated age-related hypertension in CD4+ T cell-specific DP1-deficient mice. DP1 receptor activation by BW245C prevented age-associated blood pressure elevation and reduced vascular/renal superoxide production in male mice. CONCLUSIONS: The prostaglandin D2/DP1 axis suppresses age-related Th1 activation and subsequent hypertensive response in male mice through increase of NEDD4L-mediated T-bet degradation by ubiquitination. Therefore, the T cell DP1 receptor may be an attractive therapeutic target for age-related hypertension.


Assuntos
Envelhecimento , Linfócitos T CD4-Positivos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Receptores de Prostaglandina/metabolismo , Proteínas com Domínio T/metabolismo , Idoso , Animais , Anti-Hipertensivos/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/metabolismo , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/agonistas , Receptores de Prostaglandina/deficiência , Receptores de Prostaglandina/genética , Transdução de Sinais , Fator de Transcrição Sp1/metabolismo , Superóxidos/metabolismo , Células Th1/metabolismo , Ubiquitinação
9.
J Pathol ; 248(4): 438-451, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30900255

RESUMO

The mineralocorticoid receptor (MR) plays important roles in cardiovascular pathogenesis. The function of MR in angiogenesis is still controversial. This study aimed to explore the role of endothelial MR in angiogenesis and to delineate the underlying mechanism. Endothelial-hematopoietic MR knockout (EMRKO) mice were generated and subjected to hindlimb ischemia and injection of melanoma cells. Laser Doppler measurements showed that EMRKO mice had improved blood flow recovery and increased vessel density in ischemic limbs. In addition, EMRKO accelerated growth and increased the vessel density of tumors. Matrigel implantation, aortic ring assays, and tube formation assays demonstrated that MRKO endothelial cells (ECs) manifested increased angiogenic potential. MRKO ECs also displayed increased migration ability and proliferation. MRKO and MR knockdown both upregulated gene expression, protein level, and phosphorylation of signal transducer and activator of transcription 3 (STAT3). Stattic, a selective STAT3 inhibitor, attenuated the effects of MRKO on tube formation, migration, and proliferation of ECs. At the molecular level, MR interacted with CCAAT enhancer-binding protein beta (C/EBPß) to suppress the transcription of STAT3. Furthermore, interactions between MR and STAT3 blocked the phosphorylation of STAT3. Finally, stattic abolished the pro-angiogenic phenotype of EMRKO mice. Taken together, endothelial MR is a negative regulator of angiogenesis, likely in a ligand-independent manner. Mechanistically, MR downregulates STAT3 that mediates the impacts of MR deficiency on the angiogenic activity of ECs and angiogenesis. Targeting endothelial MR may be a potential pro-angiogenic strategy for ischemic diseases. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Receptores de Mineralocorticoides/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Biomarcadores/metabolismo , Movimento Celular , Proliferação de Células , Regulação para Baixo , Células Endoteliais/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia
10.
J Biol Chem ; 293(3): 1030-1039, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203528

RESUMO

Type I IFN production and signaling in macrophages play critical roles in innate immune responses. High salt (i.e. high concentrations of NaCl) has been proposed to be an important environmental factor that influences immune responses in multiple ways. However, it remains unknown whether high salt regulates type I IFN production and signaling in macrophages. Here, we demonstrated that high salt promoted IFNß production and its signaling in both human and mouse macrophages, and consequentially primed macrophages for strengthened immune sensing and signaling when challenged with viruses or viral nucleic acid analogues. Using both pharmacological inhibitors and RNA interference we showed that these effects of high salt on IFNß signaling were mediated by the p38 MAPK/ATF2/AP1 signaling pathway. Consistently, high salt increased resistance to vesicle stomatitis virus (VSV) infection in vitro. In vivo data indicated that a high-salt diet protected mice from lethal VSV infection. Taken together, these results identify high salt as a crucial regulator of type I IFN production and signaling, shedding important new light on the regulation of innate immune responses.


Assuntos
Interferon Tipo I/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Cloreto de Sódio/farmacologia , Animais , Antivirais/farmacologia , Western Blotting , Farmacorresistência Viral , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Circ Res ; 120(10): 1584-1597, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28298295

RESUMO

RATIONALE: Hypertension remains to be a global public health burden and demands novel intervention strategies such as targeting T cells and T-cell-derived cytokines. Mineralocorticoid receptor (MR) antagonists have been clinically used to treat hypertension. However, the function of T-cell MR in blood pressure (BP) regulation has not been elucidated. OBJECTIVE: We aim to determine the role of T-cell MR in BP regulation and to explore the mechanism. METHODS AND RESULTS: Using T-cell MR knockout mouse in combination with angiotensin II-induced hypertensive mouse model, we demonstrated that MR deficiency in T cells strikingly decreased both systolic and diastolic BP and attenuated renal and vascular damage. Flow cytometric analysis showed that T-cell MR knockout mitigated angiotensin II-induced accumulation of interferon-gamma (IFN-γ)-producing T cells, particularly CD8+ population, in both kidneys and aortas. Similarly, eplerenone attenuated angiotensin II-induced elevation of BP and accumulation of IFN-γ-producing T cells in wild-type mice. In cultured CD8+ T cells, T-cell MR knockout suppressed IFN-γ expression whereas T-cell MR overexpression and aldosterone both enhanced IFN-γ expression. At the molecular level, MR interacted with NFAT1 (nuclear factor of activated T-cells 1) and activator protein-1 in T cells. Finally, T-cell MR overexpressing mice manifested more elevated BP compared with control mice after angiotensin II infusion and such difference was abolished by IFN-γ-neutralizing antibodies. CONCLUSIONS: MR may interact with NFAT1 and activator protein-1 to control IFN-γ in T cells and to regulate target organ damage and ultimately BP. Targeting MR in T cells specifically may be an effective novel approach for hypertension treatment.


Assuntos
Pressão Sanguínea/fisiologia , Interferon gama/fisiologia , Receptores de Mineralocorticoides/fisiologia , Linfócitos T/fisiologia , Acetilcolina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hipertensão/genética , Hipertensão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
J Biol Chem ; 292(3): 925-935, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27881672

RESUMO

Mineralocorticoid receptor (MR) has been considered as a potential target for treating atherosclerosis. However, the cellular and molecular mechanisms are not completely understood. We aim to explore the functions and mechanisms of macrophage MR in atherosclerosis. Atherosclerosis-susceptible LDLRKO chimeric mice with bone marrow cells from floxed control mice or from myeloid MR knock-out (MRKO) mice were generated and fed with high cholesterol diet. Oil red O staining showed that MRKO decreased atherosclerotic lesion area in LDLRKO mice. In another mouse model of atherosclerosis, MRKO/APOEKO mice and floxed control/APOEKO mice were generated and treated with angiotensin II. Similarly, MRKO inhibited the atherosclerotic lesion area in APOEKO mice. Histological analysis showed that MRKO increased collagen coverage and decreased necrosis and macrophage accumulation in the lesions. In vitro results demonstrated that MRKO suppressed macrophage foam cell formation and up-regulated the expression of genes involved in cholesterol efflux. Furthermore, MRKO decreased accumulation of apoptotic cells and increased effective efferocytosis in atherosclerotic lesions. In vitro study further revealed that MRKO increased the phagocytic index of macrophages without affecting their apoptosis. In conclusion, MRKO reduces high cholesterol- or angiotensin II-induced atherosclerosis and favorably changes plaque composition, likely improving plaque stability. Mechanistically, MR deficiency suppresses macrophage foam cell formation and up-regulates expression of genes related to cholesterol efflux, as well as increases effective efferocytosis and phagocytic capacity of macrophages.


Assuntos
Apoptose , Aterosclerose/metabolismo , Células Espumosas/metabolismo , Receptores de Mineralocorticoides/deficiência , Regulação para Cima , Angiotensina II/efeitos adversos , Angiotensina II/farmacologia , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/patologia , Colesterol/efeitos adversos , Colesterol/metabolismo , Colesterol/farmacologia , Modelos Animais de Doenças , Feminino , Células Espumosas/patologia , Masculino , Camundongos , Camundongos Knockout , Receptores de Mineralocorticoides/metabolismo
13.
Hepatology ; 65(3): 999-1014, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28039934

RESUMO

Prostaglandin E2 (PGE2 ) is an important lipid mediator of inflammation. However, whether and how PGE2 regulates hepatic cholesterol metabolism remains unknown. We found that expression of the PGE2 receptor, E prostanoid receptor 3 (EP3) expression is remarkably increased in hepatocytes in response to hyperlipidemic stress. Hepatocyte-specific deletion of EP3 receptor (EP3hep-/- ) results in hypercholesterolemia and augments diet-induced atherosclerosis in low-density lipoprotein receptor knockout (Ldlr-/- ) mice. Cholesterol 7α-hydroxylase (CYP7A1) is down-regulated in livers of EP3hep-/- Ldlr-/- mice, leading to suppressed hepatic bile acid (BA) biosynthesis. Mechanistically, hepatic-EP3 deficiency suppresses CYP7A1 expression by elevating protein kinase A (PKA)-dependent Ser143 phosphorylation of hepatocyte nuclear receptor 4α (HNF4α). Disruption of the PKA-HNF4α interaction and BA sequestration rescue impaired BA excretion and ameliorated atherosclerosis in EP3hep-/- Ldlr-/- mice. CONCLUSION: Our results demonstrated an unexpected role of proinflammatory mediator PGE2 in improving hepatic cholesterol metabolism through activation of the EP3-mediated PKA/HNF4α/CYP7A1 pathway, indicating that inhibition of this pathway may be a novel therapeutic strategy for dyslipidemia and atherosclerosis. (Hepatology 2017;65:999-1014).


Assuntos
Aterosclerose/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Dinoprostona/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Animais , Aterosclerose/patologia , Células Cultivadas , Colesterol 7-alfa-Hidroxilase/metabolismo , Dieta Ocidental , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/genética , Distribuição Aleatória , Sensibilidade e Especificidade
14.
Circ Res ; 118(8): 1194-207, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26957525

RESUMO

RATIONALE: Autologous adipose-derived stromal cells (ASCs) offer great promise as angiogenic cell therapy for ischemic diseases. Because of their limited self-renewal capacity and pluripotentiality, the therapeutic efficacy of ASCs is still relatively low. Thromboxane has been shown to play an important role in the maintenance of vascular homeostasis. However, little is known about the effects of thromboxane on ASC-mediated angiogenesis. OBJECTIVE: To explore the role of the thromboxane-prostanoid receptor (TP) in mediating the angiogenic capacity of ASCs in vivo. METHODS AND RESULTS: ASCs were prepared from mouse epididymal fat pads and induced to differentiate into endothelial cells (ECs) by vascular endothelial growth factor. Cyclooxygenase-2 expression, thromboxane production, and TP expression were upregulated in ASCs on vascular endothelial growth factor treatment. Genetic deletion or pharmacological inhibition of TP in mouse or human ASCs accelerated EC differentiation and increased tube formation in vitro, enhanced angiogenesis in in vivo Matrigel plugs and ischemic mouse hindlimbs. TP deficiency resulted in a significant cellular accumulation of ß-catenin by suppression of calpain-mediated degradation in ASCs. Knockdown of ß-catenin completely abrogated the enhanced EC differentiation of TP-deficient ASCs, whereas inhibition of calpain reversed the suppressed angiogenic capacity of TP re-expressed ASCs. Moreover, TP was coupled with Gαq to induce calpain-mediated suppression of ß-catenin signaling through calcium influx in ASCs. CONCLUSION: Thromboxane restrained EC differentiation of ASCs through TP-mediated repression of the calpain-dependent ß-catenin signaling pathway. These results indicate that TP inhibition could be a promising strategy for therapy utilizing ASCs in the treatment of ischemic diseases.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Células Endoteliais/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/biossíntese , Tromboxanos/biossíntese , Adipócitos/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , beta Catenina/biossíntese
15.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2355-2362, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28673515

RESUMO

High levels of glucose (HG) induce reactive oxygen species-mediated oxidative stress in endothelial cells (ECs), which leads to endothelial dysfunction and tissue damage. However, the molecular mechanisms involved in HG-induced endothelial oxidative stress and damage remain elusive. Here we show that cellular ATP level-modulated p53 Thr55 phosphorylation plays a critical role in the process. Upon HG exposure, the elevated ATP levels induced the kinase activity of TAF1 (TBP-associated factor 1), which leads to p53 Thr55 phosphorylation. The phosphorylation dissociates p53 from the glutathione peroxidase 1 (GPX1) promoter and results in reduction of GPX1 expression. Inhibition of TAF1-mediated p53 Thr55 phosphorylation abolished those events, supporting the role of TAF1 in sensing cellular ATP elevation and in regulating GPX1 expression under the HG condition. Importantly, treating cells with HG increased intracellular H2O2 and cell apoptosis, as well as suppressed nitric oxide (NO) bioavailability and tube network formation. These effects were also remarkably reversed by inhibition of TAF1 and p53 Thr55 phosphorylation. We conclude that HG leads to endothelial dysfunction via TAF1-mediated p53 Thr55 phosphorylation and subsequent GPX1 inactivation. Our study thus revealed a novel mechanism by which HG induces endothelial oxidative stress and damage and possibly provided an avenue for targeted therapy for diabetes-associated cardiovascular diseases.


Assuntos
Antioxidantes/metabolismo , Glucose/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Peróxido de Hidrogênio/farmacologia , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Proteína Supressora de Tumor p53/genética , Glutationa Peroxidase GPX1
16.
Arterioscler Thromb Vasc Biol ; 36(5): 874-85, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26966277

RESUMO

OBJECTIVE: Restenosis after percutaneous coronary intervention remains to be a serious medical problem. Although mineralocorticoid receptor (MR) has been implicated as a potential target for treating restenosis, the cellular and molecular mechanisms are largely unknown. This study aims to explore the functions of macrophage MR in neointimal hyperplasia and to delineate the molecular mechanisms. APPROACH AND RESULTS: Myeloid MR knockout (MMRKO) mice and controls were subjected to femoral artery injury. MMRKO reduced intima area and intima/media ratio, Ki67- and BrdU-positive vascular smooth muscle cells, expression of proinflammatory molecules, and macrophage accumulation in injured arteries. MMRKO macrophages migrated less in culture. MMRKO decreased Ki67- and BrdU-positive macrophages in injured arteries. MMRKO macrophages were less Ki67-positive in culture. Conditioned media from MMRKO macrophages induced less migration, Ki67 positivity, and proinflammatory gene expression of vascular smooth muscle cells. After lipopolysaccharide treatment, MMRKO macrophages had decreased p-cFos and p-cJun compared with control macrophages, suggesting suppressed activation of activator protein-1 (AP1). Nuclear factor-κB (NF-κB) pathway was also inhibited by MMRKO, manifested by decreased p-IκB kinase-ß and p-IκBα, increased IκBα expression, decreased nuclear translocation of p65 and p50, as welll as decreased phosphorylation and expression of p65. Finally, overexpression of serum-and-glucocorticoid-inducible-kinase-1 (SGK1) attenuated the effects of MR deficiency in macrophages. CONCLUSIONS: Selective deletion of MR in myeloid cells limits macrophage accumulation and vascular inflammation and, therefore, inhibits neointimal hyperplasia and vascular remodeling. Mechanistically, MR deficiency suppresses migration and proliferation of macrophages and leads to less vascular smooth muscle cell activation. At the molecular level, MR deficiency suppresses macrophage inflammatory response via SGK1-AP1/NF-κB pathways.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Inflamação/enzimologia , Macrófagos/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NF-kappa B/metabolismo , Neointima , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Mineralocorticoides/deficiência , Fator de Transcrição AP-1/metabolismo , Lesões do Sistema Vascular/enzimologia , Animais , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Modelos Animais de Doenças , Artéria Femoral/enzimologia , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Predisposição Genética para Doença , Hiperplasia , Proteínas Imediatamente Precoces/genética , Inflamação/genética , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Comunicação Parácrina , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Células RAW 264.7 , Interferência de RNA , Receptores de Mineralocorticoides/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Remodelação Vascular , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/prevenção & controle
17.
Cardiology ; 138(1): 55-62, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28571007

RESUMO

OBJECTIVES: Eplerenone (EPL), an antagonist of the mineralocorticoid receptor, is beneficial for atrial fibrillation and atrial fibrosis. However, the underlying mechanism remains less well known. We aimed to investigate the effect of EPL on atrial fibrosis using a mouse with selective atrial fibrosis and to explore the underlying mechanisms. METHODS: EPL-treated MHC-TGFcys33ser transgenic mice that have selective atrial fibrosis (Tx+EPL mice), as well as control mice, were used for in vivo studies including histological analyses, Western blotting, and qRT-PCR studies. TGF-ß1-stimulated atrial fibroblasts were treated with EPL or vehicle for the in vitro studies including Western blotting and qRT-PCR studies. In addition, Smad7 siRNA was used to knock down Smad7. RESULTS: EPL inhibited atrial fibrosis in the Tx mice. In addition, EPL suppressed the expression of fibrosis-related molecules induced by TGF-ß1 in vivo and in vitro. This occurred in concert with a downregulation of Smad7 protein expression and an upregulation of p-Smad2/3 protein expression. In addition, knockdown of Smad7 by siRNA abolished the protective roles of EPL. CONCLUSIONS: EPL inhibited atrial fibrosis in Tx mice. The underlying mechanism may involve increased protein expression of Smad7, which enhances the inhibitory feedback regulation of TGF-ß1/Smad signaling.


Assuntos
Fibrilação Atrial/patologia , Átrios do Coração/patologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Proteína Smad7/genética , Espironolactona/análogos & derivados , Animais , Fibrilação Atrial/tratamento farmacológico , Células Cultivadas , Eplerenona , Fibroblastos/efeitos dos fármacos , Fibrose , Átrios do Coração/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Espironolactona/farmacologia , Fator de Crescimento Transformador beta1/farmacologia
18.
Histopathology ; 69(2): 230-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26802566

RESUMO

AIMS: The definition of tumour deposit (TD) in colorectal cancer (CRC) was changed recently in the American Joint Commission on Cancer (AJCC) Staging Manual, 7th edition. We aimed to examine the prognostic values of the newly defined TD and perineural invasion (PNI) in this population study. METHODS AND RESULTS: We identified the incidental CRC cases with known TD or PNI status in the Surveillance, Epidemiology, and End Results (SEER) programme diagnosed in 2010 and 2011. Kaplan-Meier survival analysis and multivariable Cox proportional hazards models were used to estimate overall survivals (OS) and cancer-specific survival (CSS). We found that 6.71% (2774 of 41 323) of the CRC cases were positive for TD and 9.61% (3970 of 41 215) positive for PNI. In multivariable models, TD- and PNI-positive statuses correlated independently with worse 3-year OS [hazard ratio (HR): 1.68, 95% confidence interval (CI): 1.58-1.80 and HR: 1.24, 95%: CI: 1.16-1.32, respectively] and 3-year CSS (HR: 1.79, 95% CI: 1.65-1.94 and HR: 1.28, 95% CI: 1.18-1.38, respectively, P < 0.001 for all). Other independent prognostic factors included age, T category, N category, tumour location and tumour grade, but not gender. TD and PNI correlated with worse OS in all N categories (P < 0.001 for all). TD-associated HR for 3-year OS increases as the N category becomes lower (1.73 in N2, 2.32 in N1 and 3.24 in N0), while rare (1.4%) TD-positive CRC in N0 category should have been assigned to N1c. CONCLUSIONS: Tumour deposit and PNI correlate independently with worse 3-year OS and CSS. TD appears prognostically more important in the CRC of lower N categories.


Assuntos
Neoplasias Colorretais/diagnóstico , Idoso , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Achados Incidentais , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Nervos Periféricos/patologia , Prognóstico , Modelos de Riscos Proporcionais , Programa de SEER
19.
J Adv Res ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38341030

RESUMO

INTRODUCTION: Nuclear receptor corepressor 1(NCOR1) is reported to play crucial roles in cardiovascular diseases, but its function in the kidney has remained obscure. OBJECTIVE: We aim to elucidate the role of collecting duct NCOR1 in blood pressure (BP) regulation. METHODS AND RESULTS: Collecting duct NCOR1 knockout (KO) mice manifested increased BP and aggravated vascular and renal injury in an angiotensin II (Ang II)-induced hypertensive model. KO mice also showed significantly higher BP than littermate control (LC) mice in deoxycorticosterone acetate (DOCA)-salt model. Further study showed that collecting duct NCOR1 deficiency aggravated volume and sodium retention after saline challenge. Among the sodium transporter in the collecting duct, the expression of the three epithelial sodium channel (ENaC) subunits was markedly increased in the renal medulla of KO mice. Consistently, BP in Ang II-infused KO mice decreased significantly to the similar level as those in LC mice after amiloride treatment. ChIP analysis revealed that NCOR1 deficiency increased the enrichment of mineralocorticoid receptor (MR) on the promoters of the three ENaC genes in primary inner medulla collecting duct (IMCD) cells. Co-IP results showed interaction between NCOR1 and MR, and luciferase reporter results demonstrated that NCOR1 inhibited the transcriptional activity of MR. Knockdown of MR eliminated the increased ENaC expression in primary IMCD cells isolated from KO mice. Finally, BP was significantly decreased in Ang II-infused KO mice after treatment of MR antagonist spironolactone and the difference between LC and KO mice was abolished. CONCLUSIONS: NCOR1 interacts with MR to control ENaC activity in the collecting duct and to regulate sodium reabsorption and ultimately BP. Targeting NCOR1 might be a promising tactic to interrupt the volume and sodium retention of the collecting duct in hypertension.

20.
mSystems ; 9(1): e0116923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38108668

RESUMO

The microbiota plays an important role in both hypertension (HTN) and periodontitis (PD), and PD exacerbates the development of HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, which is also a member of the microbiota. We collected 180 samples of subgingival plaques, saliva, and feces from a cohort of healthy subjects (nHTNnPD), subjects with HTN (HTNnPD) or PD (PDnHTN), and subjects with both HTN and PD (HTNPD). We performed metagenomic sequencing to assess the roles of the oral and gut viromes in HTN and PD. The HTNnPD, PDnHTN, and HTNPD groups all showed significantly distinct beta diversity from the nHTNnPD group in saliva. We analyzed alterations in oral and gut viral composition in HTN and/or PD and identified significantly changed viruses in each group. Many viruses across three sites were significantly associated with blood pressure and other clinical parameters. Combined with these clinical associations, we found that Gillianvirus in subgingival plaques was negatively associated with HTN and that Torbevirus in saliva was positively associated with HTN. We found that Pepyhexavirus from subgingival plaques was indicated to be transferred to the gut. We finally evaluated viral-bacterial transkingdom interactions and found that viruses and bacteria may cooperate to affect HTN and PD. Correspondingly, HTN and PD may synergize to improve communications between viruses and bacteria.IMPORTANCEPeriodontitis (PD) and hypertension (HTN) are both highly prevalent worldwide and cause serious adverse outcomes. Increasing studies have shown that PD exacerbates HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, even though viruses are common inhabitants in humans. Alterations in oral and gut viral diversity and composition contribute to diseases. The present study, for the first time, profiled the oral and gut viromes in HTN and/or PD. We identified key indicator viruses and their clinical implications in HTN and/or PD. We also investigated interactions between viruses and bacteria. This work improved the overall understanding of the viromes in HTN and PD, providing vital insights into the role of the virome in the development of HTN and PD.


Assuntos
Hipertensão , Microbiota , Periodontite , Vírus , Humanos , Viroma , Vírus/genética , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA