Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(11): 5261-5269, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37005375

RESUMO

BACKGROUND: The high viscosity of konjac glumannan (KGM) limits its application in meat processing. In this work, the effects of konjac oligo-glucomannan (KOG), as a derivative of KGM, on the emulsifying properties of myofibrillar protein (MP) and the related mechanism were investigated. RESULTS: It was found that the addition of KOG had no significant effect on the secondary structure of MP, but altered the tertiary conformation of MP, resulting in exposure of tyrosine residues to polar microenvironments and decreased intrinsic fluorescence intensity. In addition, the addition of KOG increased the emulsifying activity of MP, resulting in decreased particle size and improved physical stability of the emulsion. The emulsifying activity of MP reached the maximum value when 1.0 wt% KOG was added. Moreover, the interfacial tension and interfacially adsorbed protein content of MP/KOG emulsions decreased with the increase in KOG concentration. CONCLUSION: These findings demonstrated that KOG mainly interacted with MP and changed the amphipathy of the KOG-MP at the oil-water interface, forming a stable interface film to improve the emulsifying properties of MP. © 2023 Society of Chemical Industry.


Assuntos
Amorphophallus , Amorphophallus/química , Proteínas/química , Reologia/métodos , Emulsões/química , Viscosidade
2.
J Sci Food Agric ; 102(2): 823-835, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34232506

RESUMO

BACKGROUND: The relatively inferior techno-functionality of flaxseed protein/polysaccharide complexes, especially regarding emulsifying and antioxidant activities, has partially limited their implication in the health food system. The present study aimed to investigate the effects of an atmospheric pressure plasma jet (APPJ) on the physicochemical, structural and selected techno-functional properties of flaxseed extracts. RESULTS: The results obtained showed that the full-fat and defatted flaxseed extract solutions (5 mg mL-1 ) displayed a sustainable decline in pH (-54.06%, -48.80%, P < 0.05) and zeta potential values (-29.42%, -44.28%, P < 0.05), but a gradual increase in particle sizes, as visualised by an optical microscope, during 0-120 s of APPJ treatment. Moreover, the APPJ led to initial decrease but subsequent increase in protein carbonyls and secondary lipid oxidation products, and concurrently changed the spatial conformation and microstructure of flaxseed extracts, as indicated by endogenous fluorescence properties and scanning electron microscopy (SEM). Additionally, the protein subunit remodeling and gum polysaccharides depolymerization were different for full-fat and defatted flaxseed extracts after 30 s of APPJ exposure. Importantly, the emulsifying and antioxidant activities of defatted flaxseed extract were particularly improved, as assessed by cyro-SEM and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity following 15-30 s of APPJ treatment, as a result of the changing interactions between protein and gum polysaccharides, as well as the release of specific phenolic compounds. CONCLUSION: APPJ could serve as a promising strategy for tailoring the specific techno-functionality of flaxseed extracts based on mild structural modification. © 2021 Society of Chemical Industry.


Assuntos
Linho/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sementes/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Pressão Atmosférica , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
3.
J Mol Model ; 29(9): 295, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632522

RESUMO

CONTEXT: nanoKAZ is a compact luciferase that exhibits intense blue light emission when it catalyzes the substrate Furimazine (FMZ) as a luciferin, making it an excellent candidate as a reporter protein. However, the specific catalytic residues and mechanism of nanoKAZ have not been revealed. Recently, the structure of nanoKAZ was determined, and it was observed that the luminescent properties changed when FMZ analogs with naphthalene replacing benzene were used. It is speculated that the substituted naphthalene may influence the interaction between the catalytic residues and luciferins, thereby affecting the energy of the emitted light signal. METHOD: Therefore, the primary objective of this study is to analyze and compare the molecular recognition between nanoKAZ and FMZ along with its four activity-altered naphthalene analogs, with aiming to identify the catalytic residues. Molecular docking was employed to construct all nanoKAZ-luciferin models, followed by a 500 ns molecular dynamics simulation. The simulation trajectory was subjected to MM/PBSA analysis to identify crucial residues that contribute significantly to luciferin binding. In the result, two polar residues Y109, and R162 were identified as active residues as their notable contributions to the binding energy. Subsequently, an oxygen molecule was introduced into the local region of the nanoKAZ-FMZ complex and followed with quantum chemical calculations (semiempirical and DFT methods were used) to investigate the catalysis details. The results illustrated the involvement of Y109 and R162 in the oxygenation of FMZ, leading to the formation of dioxetanone, which has been suggested as an important intermediate in the oxidation process among various luciferins sharing the same functional group as FMZ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA