Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Langmuir ; 28(21): 7947-51, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22540224

RESUMO

A stepwise surface functionalization methodology was applied to nanostructured ZnO films grown by metal organic chemical vapor deposition (MOCVD) having three different surface morphologies (i.e., nanorod layers (ZnO films-N), rough surface films (ZnO films-R), and planar surface films (ZnO films-P). The films were grown on glass substrates and on the sensing area of a quartz crystal microbalance (nano-QCM). 16-(2-Pyridyldithiol)-hexadecanoic acid (PDHA) was bound to ZnO films-N, -R, and -P through the carboxylic acid unit, followed by a nucleophilic displacement of the 2-pyridyldithiol moiety by single-stranded DNA capped with a thiol group (SH-ssDNA). The resulting ssDNA-functionalized films were hybridized with complementary ssDNA tagged with fluorescein (ssDNA-Fl). In a selectivity control experiment, no hybridization occurred upon treatment with non complementary DNA. The ZnO films' surface functionalization, characterized by FT-IR-ATR and fluorescence spectroscopy and detected on the nano-QCM, was successful on films-N and -R but was barely detectable on the planar surface of films-P.


Assuntos
DNA de Cadeia Simples/química , Nanoestruturas/química , Óxido de Zinco/química , Membranas Artificiais , Estrutura Molecular , Ácido Palmítico/química , Tamanho da Partícula , Compostos de Sulfidrila/química , Propriedades de Superfície
2.
Drug Deliv ; 24(1): 752-764, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28468542

RESUMO

To conquer the drug resistance of tumors and the poor solubility of paclitaxel (PTX), two PTX-cell-penetrating peptide conjugates (PTX-CPPs), PTX-TAT and PTX-LMWP, were synthesized and evaluated for the first time. Compared with free PTX, PTX-CPPs displayed significantly enhanced cellular uptake, elevated cell toxicity, increased cell apoptosis, and decreased mitochondrial membrane potential (Δψm) in both A549 and A549T cells. PTX-LMWP exhibited a stronger inhibitory effect than PTX-TAT in A549T cells. Analysis of cell-cycle distribution showed that PTX-LMWP influenced mitosis in drug-resistant A549T tumor cells via a different mechanism than PTX. PTX-CPPs were more efficient in inhibiting tumor growth in tumor-bearing mice than free PTX, which suggested their better in vivo antitumor efficacy. Hence, this study demonstrates that PTX-CPPs, particularly PTX-LMWP, have outstanding potential for inhibiting the growth of tumors and are a promising approach for treating lung cancer, especially drug-resistant lung cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Células A549 , Animais , Antineoplásicos Fitogênicos , Apoptose , Peptídeos Penetradores de Células , Humanos , Camundongos , Paclitaxel
3.
ACS Appl Mater Interfaces ; 9(7): 5864-5873, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28128553

RESUMO

Chemotherapy outcomes for the treatment of glioma remain unsatisfied due to the inefficient drug transport across BBB/BBTB and poor drug accumulation in the tumor site. Nanocarriers functionalized with different targeting ligands are considered as one of the most promising alternatives. However, few studies were reported to compare the targeting efficiency of the ligands and develop nanoparticles to realize BBB/BBTB crossing and brain tumor targeting simultaneously. In this study, six peptide-based ligands (Angiopep-2, T7, Peptide-22, c(RGDfK), D-SP5 and Pep-1), widely used for brain delivery, were selected to decorate liposomes, respectively, so as to compare their targeting ability to BBB or BBTB. Based on the in vitro cellular uptake results on BCECs and HUVECs, Peptide-22 and c(RGDfK) were picked to construct a BBB/BBTB dual-crossing, glioma-targeting liposomal drug delivery system c(RGDfK)/Pep-22-DOX-LP. In vitro cellular uptake demonstrated that the synergetic effect of c(RGDfK) and Peptide-22 could significantly increase the internalization of liposomes on U87 cells. In vivo imaging further verified that c(RGDfK)/Pep-22-LP exhibited higher brain tumor distribution than single ligand modified liposomes. The median survival time of glioma-bearing mice treated with c(RGDfK)/Pep-22-DOX-LP (39.5 days) was significantly prolonged than those treated with free doxorubicin or other controls. In conclusion, the c(RGDfK) and Peptide-22 dual-modified liposome was constructed based on the targeting ability screening of various ligands. The system could effectively overcome BBB/BBTB barriers, target to tumor cells and inhibit the growth of glioma, which proved its potential for improving the efficacy of chemotherapeutics for glioma therapy.


Assuntos
Glioma , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos , Peptídeos Cíclicos
4.
Biosens Bioelectron ; 41: 84-9, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23062553

RESUMO

Noninvasive examination of live cell function in real-time is essential in advancing the understanding of the dynamic progression of cell's biological processes. We present a dynamic and noninvasive method of monitoring the adhesion and proliferation of bovine aortic endothelial cells (BAEC) using a ZnO nanostructure-modified quartz crystal microbalance (ZnOnano-QCM) biosensor. The ZnOnano-QCM biosensor consists of a conventional QCM with ZnO nanostructures directly grown on its sensing electrode deployed in-situ of a standard cell culture environment. Cell adhesion to the ZnO surfaces with various morphologies is studied and the optimal morphology is chosen for the BAEC adhesion. The ZnOnano-QCM biosensor displays enhanced sensitivity compared to the standard QCM sensor with ~10 times higher frequency shift and motional inductance, and ~4 times higher measured motional resistance at full confluency. The dynamic motional resistance and inductance relating to the cells' viscoelastic properties during growth are extracted from the measured time-evolving acoustic spectra. The Butterworth-Van-Dyck (BVD) model is adapted for the ZnOnano-QCM biosensor system and is used to correlate the measured time-evolving acoustic spectra with the motional characteristics of cell attachment and proliferation.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Células Endoteliais/fisiologia , Sistemas Microeletromecânicos/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Óxido de Zinco/química , Animais , Bovinos , Adesão Celular/fisiologia , Proliferação de Células , Células Cultivadas , Eletrodos , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Langmuir ; 25(4): 2107-13, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19199718

RESUMO

A surface functionalization methodology for the development of ZnO nanotips biosensors that can be integrated with microelectronics was developed. Two types of long chain carboxylic acids linkers were employed for the functionalization of 0.5 mum thick MOCVD-grown ZnO nanotip films with single-stranded DNA (ssDNA), followed by hybridization with complementary ssDNA tagged with fluorescein. The ZnO functionalization strategy was developed for the fabrication of ZnO nanotips-linker-biomolecule films integrated with bulk acoustic wave (BAW) biosensors, and it involved three main steps. First, 16-(2-pyridyldithiol)hexadecanoic acid or N-(15-carboxypentadecanoyloxy)succinimide, both bifunctional C16 carboxylic acids, were bound to ZnO nanotip films through the COOH group, leaving at the opposite end of the alkyl chain a thiol group protected as a 2-pyridyl disulfide, or a carboxylic group protected as a N-succinimide, respectively. In the second step, ssDNA was covalently linked to each type of ZnO-linker film: the 2-pyridyl disulfide end group was substituted with 16 bases 5'-thiol-modified DNA (SH-ssDNA), and the N-succinimide ester end group was substituted with 16 bases 5'-amino-modified DNA (NH(2)-ssDNA). In the third step, the DNA-functionalized ZnO nanotip films were hybridized with complementary 5'-fluorescein ssDNA. The surface-modified ZnO nanotip films were characterized after each step by FT-IR-ATR, fluorescence emission spectroscopy, and fluorescence microscopy. This functionalization approach allows sequential reactions on the surface and, in principle, can be extended to numerous other molecules and biomolecules.


Assuntos
DNA/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óxido de Zinco/química , Microscopia Eletrônica de Varredura , Estrutura Molecular , Ácido Palmítico/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA